Comprehensive evaluation and prediction of editing outcomes for near-PAMless adenine and cytosine base editors

Author:

Zhou Xiaoyu,Gao Jingjing,Luo Liheng,Huang Changcai,Wu Jiayu,Wang Xiaoyue

Abstract

SummaryBase editors enable the direct conversion of target bases without inducing double-strand breaks, showing great potential for disease modeling and gene therapy. Yet, their applicability has been constrained by the necessity for specific protospacer adjacent motif (PAM). We generated four versions of near-PAMless base editors and systematically evaluated their editing patterns and efficiencies using an sgRNA-target library of 45,747 sequences. Near-PAMless base editors significantly expanded the targeting scope, with both PAM and target flanking sequences as determinants for editing outcomes. We developed BEguider, a deep learning model to accurately predict editing results for near-PAMless base editors. We also provided experimentally measured editing outcomes of 20,541 ClinVar sites, demonstrating that variants previously inaccessible by NGG PAM base editors can now be precisely generated or corrected. We have made our predictive tool and data available online to facilitate development and application of near-PAMless base editors in both research and clinical settings.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3