Biomedical event extraction with a novel combination strategy based on hybrid deep neural networks

Author:

Zhu LvxingORCID,Zheng Haoran

Abstract

Abstract Background Biomedical event extraction is a fundamental and in-demand technology that has attracted substantial interest from many researchers. Previous works have heavily relied on manual designed features and external NLP packages in which the feature engineering is large and complex. Additionally, most of the existing works use the pipeline process that breaks down a task into simple sub-tasks but ignores the interaction between them. To overcome these limitations, we propose a novel event combination strategy based on hybrid deep neural networks to settle the task in a joint end-to-end manner. Results We adapted our method to several annotated corpora of biomedical event extraction tasks. Our method achieved state-of-the-art performance with noticeable overall F1 score improvement compared to that of existing methods for all of these corpora. Conclusions The experimental results demonstrated that our method is effective for biomedical event extraction. The combination strategy can reconstruct complex events from the output of deep neural networks, while the deep neural networks effectively capture the feature representation from the raw text. The biomedical event extraction implementation is available online at http://www.predictor.xin/event_extraction.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3