Author:
Chen Jiajin,Zhang Ruyang,Dong Xuesi,Lin Lijuan,Zhu Ying,He Jieyu,Christiani David C.,Wei Yongyue,Chen Feng
Abstract
Abstract
Background
High-throughput technologies have brought tremendous changes to biological domains, and the resulting high-dimensional data has also posed enormous challenges to computational science. A Bayesian network is a probabilistic graphical model represented by a directed acyclic graph, which provides concise semantics to describe the relationship between entities and has an independence assumption that is suitable for sparse omics data. Bayesian networks have been broadly used in biomedical research fields, including disease risk assessment and prognostic prediction. However, the inference and visualization of Bayesian networks are unfriendly to the users lacking programming skills.
Results
We developed an R/Shiny application, shinyBN, which is an online graphical user interface to facilitate the inference and visualization of Bayesian networks. shinyBN supports multiple types of input and provides flexible settings for network rendering and inference. For output, users can download network plots, prediction results and external validation results in publication-ready high-resolution figures.
Conclusion
Our user-friendly application (shinyBN) provides users with an easy method for Bayesian network modeling, inference and visualization via mouse clicks. shinyBN can be used in the R environment or online and is compatible with three major operating systems, including Windows, Linux and Mac OS. shinyBN is deployed at https://jiajin.shinyapps.io/shinyBN/. Source codes and the manual are freely available at https://github.com/JiajinChen/shinyBN.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
National Institutes of Health
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference11 articles.
1. Sebastiani P, Ramoni MF, Nolan V, Baldwin CT, Steinberg MH. Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia. Nat Genet. 2005;37(4):435.
2. Krishnan KC, Kurt Z, Barrere-Cain R, Sabir S, Das A, Floyd R, Vergnes L, Zhao Y, Che N, Charugundla S. Integration of multi-omics data from mouse diversity panel highlights mitochondrial dysfunction in non-alcoholic fatty liver disease. Cell Syst. 2018;6(1):103–115.e107.
3. Druzdzel MJ. SMILE: structural modeling, inference, and learning engine and GeNIe: a development environment for graphical decision-theoretic models. In: Sixteenth National Conference on Artificial Intelligence and Eleventh Conference on Innovative Applications of Artificial Intelligence; 1999. p. 902–3.
4. Friedrich CM, Klinger R. rSMILE, an interface to the Bayesian Network package GeNIe/SMILE. In: Book of Abstracts of the R User Conference; 2009.
5. Govan PB. BayesianNetwork: interactive Bayesian network modeling and analysis. J Open Source Softw. 2018;3:425.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献