SAMBA: Structure-Learning of Aquaculture Microbiomes Using a Bayesian Approach

Author:

Soriano Beatriz123,Hafez Ahmed Ibrahem2ORCID,Naya-Català Fernando1ORCID,Moroni Federico1ORCID,Moldovan Roxana Andreea245ORCID,Toxqui-Rodríguez Socorro1ORCID,Piazzon María Carla1ORCID,Arnau Vicente36ORCID,Llorens Carlos2ORCID,Pérez-Sánchez Jaume1ORCID

Affiliation:

1. Institute of Aquaculture Torre de la Sal (IATS), Consejo Superior de Investigaciones Científicas (CSIC), 12595 Ribera de Cabanes, Spain

2. Biotechvana, Parc Científic Universitat de València, 46980 Paterna, Spain

3. Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia and CSIC (UVEG-CSIC), 46980 Paterna, Spain

4. Health Research Institute INCLIVA, 46010 Valencia, Spain

5. Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012 Valencia, Spain

6. Foundation for the Promotion of Sanitary and Biomedical Research of the Valencian Community (FISABIO), 46020 Valencia, Spain

Abstract

Gut microbiomes of fish species consist of thousands of bacterial taxa that interact among each other, their environment, and the host. These complex networks of interactions are regulated by a diverse range of factors, yet little is known about the hierarchy of these interactions. Here, we introduce SAMBA (Structure-Learning of Aquaculture Microbiomes using a Bayesian Approach), a computational tool that uses a unified Bayesian network approach to model the network structure of fish gut microbiomes and their interactions with biotic and abiotic variables associated with typical aquaculture systems. SAMBA accepts input data on microbial abundance from 16S rRNA amplicons as well as continuous and categorical information from distinct farming conditions. From this, SAMBA can create and train a network model scenario that can be used to (i) infer information of how specific farming conditions influence the diversity of the gut microbiome or pan-microbiome, and (ii) predict how the diversity and functional profile of that microbiome would change under other variable conditions. SAMBA also allows the user to visualize, manage, edit, and export the acyclic graph of the modelled network. Our study presents examples and test results of Bayesian network scenarios created by SAMBA using data from a microbial synthetic community, and the pan-microbiome of gilthead sea bream (Sparus aurata) in different feeding trials. It is worth noting that the usage of SAMBA is not limited to aquaculture systems as it can be used for modelling microbiome–host network relationships of any vertebrate organism, including humans, in any system and/or ecosystem.

Funder

Spanish MCIN project Bream-AquaINTECH

MCINN

Generalitat Valenciana

Industrial Doctorate of MINECO

EU H2020 Research Innovation Program

Ramón y Cajal Postdoctoral Research Fellowship

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Reference59 articles.

1. The Gut Microbiota of Marine Fish;Egerton;Front. Microbiol.,2018

2. Highlights from gut microbiota survey in farmed fish—European sea bass and gilthead sea bream case studies;Terova;Aquac. Eur.,2022

3. Global agricultural intensification during climate change: A role for genomics;Abberton;Plant Biotechnol. J.,2016

4. Reducing food’s environmental impacts through producers and consumers;Poore;Science,2018

5. Genetic selection for growth drives differences in intestinal microbiota composition and parasite disease resistance in gilthead sea bream;Piazzon;Microbiome,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3