Machine learning for discovering missing or wrong protein function annotations

Author:

Nakano Felipe Kenji,Lietaert Mathias,Vens Celine

Abstract

Abstract Background A massive amount of proteomic data is generated on a daily basis, nonetheless annotating all sequences is costly and often unfeasible. As a countermeasure, machine learning methods have been used to automatically annotate new protein functions. More specifically, many studies have investigated hierarchical multi-label classification (HMC) methods to predict annotations, using the Functional Catalogue (FunCat) or Gene Ontology (GO) label hierarchies. Most of these studies employed benchmark datasets created more than a decade ago, and thus train their models on outdated information. In this work, we provide an updated version of these datasets. By querying recent versions of FunCat and GO yeast annotations, we provide 24 new datasets in total. We compare four HMC methods, providing baseline results for the new datasets. Furthermore, we also evaluate whether the predictive models are able to discover new or wrong annotations, by training them on the old data and evaluating their results against the most recent information. Results The results demonstrated that the method based on predictive clustering trees, Clus-Ensemble, proposed in 2008, achieved superior results compared to more recent methods on the standard evaluation task. For the discovery of new knowledge, Clus-Ensemble performed better when discovering new annotations in the FunCat taxonomy, whereas hierarchical multi-label classification with genetic algorithm (HMC-GA), a method based on genetic algorithms, was overall superior when detecting annotations that were removed. In the GO datasets, Clus-Ensemble once again had the upper hand when discovering new annotations, HMC-GA performed better for detecting removed annotations. However, in this evaluation, there were less significant differences among the methods. Conclusions The experiments have showed that protein function prediction is a very challenging task which should be further investigated. We believe that the baseline results associated with the updated datasets provided in this work should be considered as guidelines for future studies, nonetheless the old versions of the datasets should not be disregarded since other tasks in machine learning could benefit from them.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3