Machine learning with requirements: A manifesto

Author:

Giunchiglia Eleonora1,Imrie Fergus2,van der Schaar Mihaela34,Lukasiewicz Thomas56

Affiliation:

1. Imperial-X, Department of Electrical and Electronic Engineering, Imperial College, United Kingdom

2. Department of Electrical and Computer Engineering, University of California, Los Angeles, USA

3. DAMTP, University of Cambridge, United Kingdom

4. Alan Turing Institute, United Kingdom

5. Institute of Logic and Computation, Vienna University of Technology, Austria

6. Department of Computer Science, University of Oxford, United Kingdom

Abstract

In the recent years, machine learning has made great advancements that have been at the root of many breakthroughs in different application domains. However, it is still an open issue how to make them applicable to high-stakes or safety-critical application domains, as they can often be brittle and unreliable. In this paper, we argue that requirements definition and satisfaction can go a long way to make machine learning models even more fitting to the real world, especially in critical domains. To this end, we present two problems in which (i) requirements arise naturally, (ii) machine learning models are or can be fruitfully deployed, and (iii) neglecting the requirements can have dramatic consequences. Our proposed pyramid development process integrates requirements specification into every stage of the machine learning pipeline, ensuring mutual influence between requirements and subsequent phases. Additionally, we explore the pivotal role of Neuro-symbolic AI in facilitating this integration, paving the way for more reliable and robust machine learning applications in critical domains. Through this approach, we aim to bridge the gap between theoretical advancements and practical implementations, ensuring machine learning’s safe and effective deployment in sensitive areas.

Publisher

IOS Press

Reference70 articles.

1. A. Agarwal, A. Beygelzimer, M. Dudík, J. Langford and H.M. Wallach, A reductions approach to fair classification, in: Proc. of ICML, PMLR, 2018, pp. 60–69.

2. K. Ahmed, K. Chang and G.V. den Broeck, A pseudo-semantic loss for autoregressive models with logical constraints, in: Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10–16, 2023, A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt and S. Levine, eds, 2023.

3. K. Ahmed, S. Teso, K. Chang, G.V. den Broeck and A. Vergari, Semantic probabilistic layers for neuro-symbolic learning, in: Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28–December 9, 2022, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho and A. Oh, eds, 2022, http://papers.nips.cc/paper_files/paper/2022/hash/c182ec594f38926b7fcb827635b9a8f4-Abstract-Conference.html.

4. K. Ahmed, S. Teso, K. Chang, G.V. den Broeck and A. Vergari, Semantic probabilistic layers for neuro-symbolic learning, in: Proc. of NeurIPS, 2022.

5. S. Amershi, A. Begel, C. Bird, R. DeLine, H.C. Gall, E. Kamar, N. Nagappan, B. Nushi and T. Zimmermann, Software engineering for machine learning: A case study, in: Proceedings of the 41st International Conference on Software Engineering: Software Engineering in Practice, ICSE (SEIP), Montreal, QC, Canada, May 25–31, 2019, H. Sharp and M. Whalen, eds, IEEE/ACM, 2019, pp. 291–300.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3