Metagenomic analysis through the extended Burrows-Wheeler transform

Author:

Guerrini Veronica,Louza Felipe A.,Rosone GiovannaORCID

Abstract

Abstract Background The development of Next Generation Sequencing (NGS) has had a major impact on the study of genetic sequences. Among problems that researchers in the field have to face, one of the most challenging is the taxonomic classification of metagenomic reads, i.e., identifying the microorganisms that are present in a sample collected directly from the environment. The analysis of environmental samples (metagenomes) are particularly important to figure out the microbial composition of different ecosystems and it is used in a wide variety of fields: for instance, metagenomic studies in agriculture can help understanding the interactions between plants and microbes, or in ecology, they can provide valuable insights into the functions of environmental communities. Results In this paper, we describe a new lightweight alignment-free and assembly-free framework for metagenomic classification that compares each unknown sequence in the sample to a collection of known genomes. We take advantage of the combinatorial properties of an extension of the Burrows-Wheeler transform, and we sequentially scan the required data structures, so that we can analyze unknown sequences of large collections using little internal memory. The tool LiME (Lightweight Metagenomics via eBWT) is available at https://github.com/veronicaguerrini/LiME. Conclusions In order to assess the reliability of our approach, we run several experiments on NGS data from two simulated metagenomes among those provided in benchmarking analysis and on a real metagenome from the Human Microbiome Project. The experiment results on the simulated data show that LiME is competitive with the widely used taxonomic classifiers. It achieves high levels of precision and specificity – e.g. 99.9% of the positive control reads are correctly assigned and the percentage of classified reads of the negative control is less than 0.01% – while keeping a high sensitivity. On the real metagenome, we show that LiME is able to deliver classification results comparable to that of MagicBlast. Overall, the experiments confirm the effectiveness of our method and its high accuracy even in negative control samples.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metagenomic Face: Applying Machine Learning to Facial Microbiome Data for Pattern Recognition and Disease Classification;2023 4th International Conference on Intelligent Technologies (CONIT);2024-06-21

2. Hypervirulent Klebsiella pneumoniae detection methods: a minireview;Archives of Microbiology;2023-09-06

3. phyBWT2: phylogeny reconstruction via eBWT positional clustering;Algorithms for Molecular Biology;2023-08-03

4. Parallel Lossy Compression for Large FASTQ Files;Biomedical Engineering Systems and Technologies;2023

5. Lossy Compressor Preserving Variant Calling through Extended BWT;Proceedings of the 15th International Joint Conference on Biomedical Engineering Systems and Technologies;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3