phyBWT2: phylogeny reconstruction via eBWT positional clustering

Author:

Guerrini Veronica,Conte Alessio,Grossi Roberto,Liti Gianni,Rosone Giovanna,Tattini Lorenzo

Abstract

Abstract Background Molecular phylogenetics studies the evolutionary relationships among the individuals of a population through their biological sequences. It may provide insights about the origin and the evolution of viral diseases, or highlight complex evolutionary trajectories. A key task is inferring phylogenetic trees from any type of sequencing data, including raw short reads. Yet, several tools require pre-processed input data e.g. from complex computational pipelines based on de novo assembly or from mappings against a reference genome. As sequencing technologies keep becoming cheaper, this puts increasing pressure on designing methods that perform analysis directly on their outputs. From this viewpoint, there is a growing interest in alignment-, assembly-, and reference-free methods that could work on several data including raw reads data. Results We present phyBWT2, a newly improved version of phyBWT (Guerrini et al. in 22nd International Workshop on Algorithms in Bioinformatics (WABI) 242:23–12319, 2022). Both of them directly reconstruct phylogenetic trees bypassing both the alignment against a reference genome and de novo assembly. They exploit the combinatorial properties of the extended Burrows-Wheeler Transform (eBWT) and the corresponding eBWT positional clustering framework to detect relevant blocks of the longest shared substrings of varying length (unlike the k-mer-based approaches that need to fix the length k a priori). As a result, they provide novel alignment-, assembly-, and reference-free methods that build partition trees without relying on the pairwise comparison of sequences, thus avoiding to use a distance matrix to infer phylogeny. In addition, phyBWT2 outperforms phyBWT in terms of running time, as the former reconstructs phylogenetic trees step-by-step by considering multiple partitions, instead of just one partition at a time, as previously done by the latter. Conclusions Based on the results of the experiments on sequencing data, we conclude that our method can produce trees of quality comparable to the benchmark phylogeny by handling datasets of different types (short reads, contigs, or entire genomes). Overall, the experiments confirm the effectiveness of phyBWT2 that improves the performance of its previous version phyBWT, while preserving the accuracy of the results.

Funder

European Commission

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Molecular Biology,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3