SMILE: systems metabolomics using interpretable learning and evolution

Author:

Sha Chengyuan,Cuperlovic-Culf Miroslava,Hu Ting

Abstract

Abstract Background Direct link between metabolism and cell and organism phenotype in health and disease makes metabolomics, a high throughput study of small molecular metabolites, an essential methodology for understanding and diagnosing disease development and progression. Machine learning methods have seen increasing adoptions in metabolomics thanks to their powerful prediction abilities. However, the “black-box” nature of many machine learning models remains a major challenge for wide acceptance and utility as it makes the interpretation of decision process difficult. This challenge is particularly predominant in biomedical research where understanding of the underlying decision making mechanism is essential for insuring safety and gaining new knowledge. Results In this article, we proposed a novel computational framework, Systems Metabolomics using Interpretable Learning and Evolution (SMILE), for supervised metabolomics data analysis. Our methodology uses an evolutionary algorithm to learn interpretable predictive models and to identify the most influential metabolites and their interactions in association with disease. Moreover, we have developed a web application with a graphical user interface that can be used for easy analysis, interpretation and visualization of the results. Performance of the method and utilization of the web interface is shown using metabolomics data for Alzheimer’s disease. Conclusions SMILE was able to identify several influential metabolites on AD and to provide interpretable predictive models that can be further used for a better understanding of the metabolic background of AD. SMILE addresses the emerging issue of interpretability and explainability in machine learning, and contributes to more transparent and powerful applications of machine learning in bioinformatics.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference40 articles.

1. Liebal UW, Phan AN, Sudhakar M, Raman K, Blank LM. Machine learning applications for mass spectrometry-based metabolomics. Metabolites. 2020;10(6):243.

2. Murdoch WJ, Singh C, Kumbier K, Abbasi-Asl R, Yu B. Definitions, methods, and applications in interpretable machine learning. Proc Natl Acad Sci USA. 2019;116(44):22071–80.

3. Holzinger A, Biemann C, Pattichis CS, Kell DB. What do we need to build explainable AI systems for the medical domain? arXiv preprint arXiv:1712.09923 (2017).

4. Molnar C. Interpretable machine learning: a guide for making black box models explainable. https://christophm.github.io/interpretable-ml-book (2019).

5. Muddapu VR, Dharshini SAP, Chakravarthy VS, Gromiha MM. Neurodegenerative diseases-is metabolic deficiency the root cause? Front Neurosci. 2020;213:14.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3