Explainable Artificial Intelligence in Alzheimer’s Disease Classification: A Systematic Review

Author:

Viswan VimbiORCID,Shaffi NoushathORCID,Mahmud MuftiORCID,Subramanian KarthikeyanORCID,Hajamohideen FaizalORCID

Abstract

AbstractThe unprecedented growth of computational capabilities in recent years has allowed Artificial Intelligence (AI) models to be developed for medical applications with remarkable results. However, a large number of Computer Aided Diagnosis (CAD) methods powered by AI have limited acceptance and adoption in the medical domain due to the typical blackbox nature of these AI models. Therefore, to facilitate the adoption of these AI models among the medical practitioners, the models' predictions must be explainable and interpretable. The emerging field of explainable AI (XAI) aims to justify the trustworthiness of these models' predictions. This work presents a systematic review of the literature reporting Alzheimer's disease (AD) detection using XAI that were communicated during the last decade. Research questions were carefully formulated to categorise AI models into different conceptual approaches (e.g., Post-hoc, Ante-hoc, Model-Agnostic, Model-Specific, Global, Local etc.) and frameworks (Local Interpretable Model-Agnostic Explanation or LIME, SHapley Additive exPlanations or SHAP, Gradient-weighted Class Activation Mapping or GradCAM, Layer-wise Relevance Propagation or LRP, etc.) of XAI. This categorisation provides broad coverage of the interpretation spectrum from intrinsic (e.g., Model-Specific, Ante-hoc models) to complex patterns (e.g., Model-Agnostic, Post-hoc models) and by taking local explanations to a global scope. Additionally, different forms of interpretations providing in-depth insight into the factors that support the clinical diagnosis of AD are also discussed. Finally, limitations, needs and open challenges of XAI research are outlined with possible prospects of their usage in AD detection.

Funder

Ministry of Higher Education, Government of Oman

Nottingham Trent University

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Computer Science Applications,Computer Vision and Pattern Recognition

Reference179 articles.

1. McDade EM. Alzheimer Disease. CONTINUUM: Lifelong Learning in Neurology. 2022;28(3):648–75.

2. Shaffi N, Hajamohideen F, Mahmud M, Abdesselam A, Subramanian K, Sariri AA. Triplet-Loss Based Siamese Convolutional Neural Network for 4-Way Classification of Alzheimer’s Disease. In: International Conference on Brain Informatics. Springer 2022; 277–87.

3. Gauthier S, Webster C, Sarvaes S, Morais J, Rosa-Neto P. World Alzheimer Report. Life After Diagnosis - Navigating Treatment. Alzheimer’s Disease International: Care and Support; 2022. p. 2022.

4. Dubois B, Picard G, Sarazin M. Early detection of Alzheimer’s disease: new diagnostic criteria. Dialogues in clinical neuroscience. 2022.

5. Tatulian SA. Challenges and hopes for Alzheimer’s disease. Drug Discovery Today. 2022

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessing the Interpretability of Machine Learning Models in Early Detection of Alzheimer's Disease;2024 16th International Conference on Human System Interaction (HSI);2024-07-08

2. VisTAD: A Vision Transformer Pipeline for the Classification of Alzheimer’s Disease;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

3. Understanding Feature Importance of Prediction Models Based on Lung Cancer Primary Care Data;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

4. Understanding the Role of Self-Attention in a Transformer Model for the Discrimination of SCD From MCI Using Resting-State EEG;IEEE Journal of Biomedical and Health Informatics;2024-06

5. A Review on Alzheimer Disease Classification using different ML and DL Models;International Journal of Scientific Research in Computer Science, Engineering and Information Technology;2024-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3