COVID-19 detection from chest X-ray images using CLAHE-YCrCb, LBP, and machine learning algorithms

Author:

Prince Rukundo,Niu Zhendong,Khan Zahid Younas,Emmanuel Masabo,Patrick Niyishaka

Abstract

Abstract Background COVID-19 is a disease that caused a contagious respiratory ailment that killed and infected hundreds of millions. It is necessary to develop a computer-based tool that is fast, precise, and inexpensive to detect COVID-19 efficiently. Recent studies revealed that machine learning and deep learning models accurately detect COVID-19 using chest X-ray (CXR) images. However, they exhibit notable limitations, such as a large amount of data to train, larger feature vector sizes, enormous trainable parameters, expensive computational resources (GPUs), and longer run-time. Results In this study, we proposed a new approach to address some of the above-mentioned limitations. The proposed model involves the following steps: First, we use contrast limited adaptive histogram equalization (CLAHE) to enhance the contrast of CXR images. The resulting images are converted from CLAHE to YCrCb color space. We estimate reflectance from chrominance using the Illumination–Reflectance model. Finally, we use a normalized local binary patterns histogram generated from reflectance (Cr) and YCb as the classification feature vector. Decision tree, Naive Bayes, support vector machine, K-nearest neighbor, and logistic regression were used as the classification algorithms. The performance evaluation on the test set indicates that the proposed approach is superior, with accuracy rates of 99.01%, 100%, and 98.46% across three different datasets, respectively. Naive Bayes, a probabilistic machine learning algorithm, emerged as the most resilient. Conclusion Our proposed method uses fewer handcrafted features, affordable computational resources, and less runtime than existing state-of-the-art approaches. Emerging nations where radiologists are in short supply can adopt this prototype. We made both coding materials and datasets accessible to the general public for further improvement. Check the manuscript’s availability of the data and materials under the declaration section for access.

Funder

African Center of Excellence in Data Science.

National Council of Science and Technology

University of Rwanda

The Ministry of ICT & Innovation (MINICT)-Rwanda

African Center of Excellence in Internet of Things

Publisher

Springer Science and Business Media LLC

Reference52 articles.

1. Worldometer. COVID-19 corona virus pandemic: coronavirus cases. https://www.worldometers.info/coronavirus/. Accessed 28 March 2022.

2. Aggarwal S, Gupta S, Alhudhaif A, Koundal D, Gupta R, Polat K. Automated COVID-19 detection in chest X-ray images using fine-tuned deep learning architectures. Expert Syst. 2022;39(3):12749.

3. Kameswari S, Brundha M, Ezhilarasan D. Advantages and disadvantages of RT-PCR in COVID 19. Eur J Mol Clin Med. 2020;7:1174–81.

4. Purohit K, Kesarwani A, Ranjan Kisku D, Dalui M. Covid-19 detection on chest X-ray and CT scan images using multi-image augmented deep learning model. In: Proceedings of the seventh international conference on mathematics and computing. Springer; 2022. p. 395–413.

5. Jones JL. Reverse transcription polymerase chain reaction. https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/reverse-transcription-polymerase-chain-reaction. Accessed 20 June 2022.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3