Enhancing Pulmonary Diagnosis in Chest X-rays through Generative AI Techniques

Author:

Sanida Theodora1ORCID,Sanida Maria Vasiliki2,Sideris Argyrios1ORCID,Dasygenis Minas1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, University of Western Macedonia, 50131 Kozani, Greece

2. Department of Digital Systems, University of Piraeus, 18534 Piraeus, Greece

Abstract

Chest X-ray imaging is an essential tool in the diagnostic procedure for pulmonary conditions, providing healthcare professionals with the capability to immediately and accurately determine lung anomalies. This imaging modality is fundamental in assessing and confirming the presence of various lung issues, allowing for timely and effective medical intervention. In response to the widespread prevalence of pulmonary infections globally, there is a growing imperative to adopt automated systems that leverage deep learning (DL) algorithms. These systems are particularly adept at handling large radiological datasets and providing high precision. This study introduces an advanced identification model that utilizes the VGG16 architecture, specifically adapted for identifying various lung anomalies such as opacity, COVID-19 pneumonia, normal appearance of the lungs, and viral pneumonia. Furthermore, we address the issue of model generalizability, which is of prime significance in our work. We employed the data augmentation technique through CycleGAN, which, through experimental outcomes, has proven effective in enhancing the robustness of our model. The combined performance of our advanced VGG model with the CycleGAN augmentation technique demonstrates remarkable outcomes in several evaluation metrics, including recall, F1-score, accuracy, precision, and area under the curve (AUC). The results of the advanced VGG16 model showcased remarkable accuracy, achieving 98.58%. This study contributes to advancing generative artificial intelligence (AI) in medical imaging analysis and establishes a solid foundation for ongoing developments in computer vision technologies within the healthcare sector.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3