Deconvolution of tumor composition using partially available DNA methylation data

Author:

He Dingqin,Chen Ming,Wang Wenjuan,Song Chunhui,Qin Yufang

Abstract

Abstract Background Deciphering proportions of constitutional cell types in tumor tissues is a crucial step for the analysis of tumor heterogeneity and the prediction of response to immunotherapy. In the process of measuring cell population proportions, traditional experimental methods have been greatly hampered by the cost and extensive dropout events. At present, the public availability of large amounts of DNA methylation data makes it possible to use computational methods to predict proportions. Results In this paper, we proposed PRMeth, a method to deconvolve tumor mixtures using partially available DNA methylation data. By adopting an iteratively optimized non-negative matrix factorization framework, PRMeth took DNA methylation profiles of a portion of the cell types in the tissue mixtures (including blood and solid tumors) as input to estimate the proportions of all cell types as well as the methylation profiles of unknown cell types simultaneously. We compared PRMeth with five different methods through three benchmark datasets and the results show that PRMeth could infer the proportions of all cell types and recover the methylation profiles of unknown cell types effectively. Then, applying PRMeth to four types of tumors from The Cancer Genome Atlas (TCGA) database, we found that the immune cell proportions estimated by PRMeth were largely consistent with previous studies and met biological significance. Conclusions Our method can circumvent the difficulty of obtaining complete DNA methylation reference data and obtain satisfactory deconvolution accuracy, which will be conducive to exploring the new directions of cancer immunotherapy. PRMeth is implemented in R and is freely available from GitHub (https://github.com/hedingqin/PRMeth).

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3