RNA sequencing reveals an additional Crz1-binding motif in promoters of its target genes in the human fungal pathogen Candida albicans

Author:

Xu Huihui,Fang Tianshu,Omran Raha Parvizi,Whiteway Malcolm,Jiang LinghuoORCID

Abstract

Abstract Background The calcium/calcineurin signaling pathway is mediated by the transcription factors NFAT (nuclear factor of activated T cells) in mammals and Crz1 (calcineurin-responsive zinc finger 1) in yeasts and other lower eukaryotes. A previous microarray analysis identified a putative Crz1-binding motif in promoters of its target genes in Candida albicans, but it has not been experimentally demonstrated. Methods An inactivation mutant for CaCRZ1 was generated through CRISPR/Cas9 approach. Transcript profiling was carried out by RNA sequencing of the wild type and the inactivation mutant for CaCRZ1 in response to 0.2 M CaCl2. Gene promoters were scanned by the online MEME (Multiple Em for Motif Elicitation) software. Gel electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) analysis were used for in vitro and in vivo CaCrz1-binding experiments, respectively. Results RNA sequencing reveals that expression of 219 genes is positively, and expression of 59 genes is negatively, controlled by CaCrz1 in response to calcium stress. These genes function in metabolism, cell cycling, protein fate, cellular transport, signal transduction, transcription, and cell wall biogenesis. Forty of these positively regulated 219 genes have previously been identified by DNA microarray analysis. Promoter analysis of these common 40 genes reveals a consensus motif [5′-GGAGGC(G/A)C(T/A)G-3′], which is different from the putative CaCrz1-binding motif [5′-G(C/T)GGT-3′] identified in the previous study, but similar to Saccharomyces cerevisiae ScCrz1-binding motif [5′-GNGGC(G/T)CA-3′]. EMSA and ChIP assays indicate that CaCrz1 binds in vitro and in vivo to both motifs in the promoter of its target gene CaUTR2. Promoter mutagenesis demonstrates that these two CaCrz1-binding motifs play additive roles in the regulation of CaUTR2 expression. In addition, the CaCRZ1 gene is positively regulated by CaCrz1. CaCrz1 can bind in vitro and in vivo to its own promoter, suggesting an autoregulatory mechanism for CaCRZ1 expression. Conclusions CaCrz1 differentially binds to promoters of its target genes to regulate their expression in response to calcium stress. CaCrz1 also regulates its own expression through the 5′-TGAGGGACTG-3′ site in its promoter.

Funder

National Natural Science Foundation of China

Natural Sciences and Engineering Research Council of Canada

Canada Research Chairs

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3