The CRZ1 transcription factor in plant fungi: regulation mechanism and impact on pathogenesis

Author:

Cacciotti A.,Beccaccioli M.,Reverberi M.

Abstract

AbstractCalcium (Ca2+) is a universal signaling molecule that is tightly regulated, and a fleeting elevation in cytosolic concentration triggers a signal cascade within the cell, which is crucial for several processes such as growth, tolerance to stress conditions, and virulence in fungi. The link between calcium and calcium-dependent gene regulation in cells relies on the transcription factor Calcineurin-Responsive Zinc finger 1 (CRZ1). The direct regulation of approximately 300 genes in different stress pathways makes it a hot topic in host-pathogen interactions. Notably, CRZ1 can modulate several pathways and orchestrate cellular responses to different types of environmental insults such as osmotic stress, oxidative stress, and membrane disruptors. It is our belief that CRZ1 provides the means for tightly modulating and synchronizing several pathways allowing pathogenic fungi to install into the apoplast and eventually penetrate plant cells (i.e., ROS, antimicrobials, and quick pH variation). This review discusses the structure, function, regulation of CRZ1 in fungal physiology and its role in plant pathogen virulence.

Funder

Università degli Studi di Roma La Sapienza

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3