Digoxin absorption decreased independently of P-gp activity in rats with irinotecan-induced gastrointestinal damage

Author:

Tsuchitani Toshiaki,Akiyoshi Takeshi,Imaoka Ayuko,Ohtani HisakazuORCID

Abstract

Abstract Background Irinotecan (CPT-11) is clinically known to cause severe diarrhea and gastrointestinal damage. Recently, we have reported that CPT-11-induced gastrointestinal damage is associated with the upregulation of intestinal P-glycoprotein (P-gp) expression and decreased absorption of its substrate, dabigatran etexilate (DABE), using a rat model. However, the P-gp activity or its contribution to the decreased absorption remains unclear. The aim of this study was to quantitatively evaluate how P-gp activity changes in rats with CPT-11-induced gastrointestinal damage, as assessed by the absorption of digoxin (DGX), a typical P-gp substrate. Methods Male Sprague-Dawley rats were intravenously administered CPT-11 at a dose of 60 mg/kg/day for 4 days to induce gastrointestinal damage. Then, the rats were administered DGX orally (40 μg/kg), after some of them were orally administered clarithromycin (CAM; 10 mg/kg), a P-gp inhibitor. DGX (30 μg/kg) was administered intravenously to determine the bioavailability (BA). The rats’ DGX plasma concentration profiles were determined using LC-MS/MS. Results CPT-11 treatment decreased the maximum concentration (Cmax) and area under the plasma concentration-time curve (AUCpo) of DGX, which does not contradict to the DABE study. Although in the CPT-11-treated group the BA of DGX was significantly decreased to 40% of the control value, CAM did not affect the BA of DGX in the CPT-11-treated group. Conclusions Increased P-gp expression in rats with CPT-11-induced gastrointestinal damage is not necessarily associated with increased P-gp activity or contribution to the drug absorption in vivo. The decreased DGX absorption observed in this study might be attributable to other factors, such as a reduction in the absorptive surface area of the gastrointestinal tract.

Funder

KAKENHI

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Pharmacology (nursing)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3