Abstract
Abstract
Background
Despite advancements in percutaneous coronary intervention, a significant proportion of ST-elevation myocardial infarction (STEMI) survivors develop long-term adverse left ventricular (LV) remodelling, which is associated with poor prognosis. Adverse remodelling is difficult to predict, however four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) can measure various aspects of LV intra-cavity flow beyond LV ejection fraction and is well equipped for exploring the underlying mechanical processes driving remodelling. The aim for this study was to compare acute 4D flow CMR parameters between patients who develop adverse remodelling with patients who do not.
Methods
Fifty prospective ‘first-event’ STEMI patients underwent CMR 5 days post-reperfusion, which included cine-imaging, and 4D flow for assessing in-plane kinetic energy (KE), residual volume, peak-E and peak-A wave KE (indexed for LV end-diastolic volume [LVEDV]). All subjects underwent follow-up cine CMR imaging at 12 months to identify adverse remodelling (defined as 20% increase in LVEDV from baseline). Quantitative variables were compared using unpaired student’s t-test. Tests were deemed statistically significant when p < 0.05.
Results
Patients who developed adverse LV remodelling by 12 months had significantly higher in-plane KE (54 ± 12 vs 42 ± 10%, p = 0.02), decreased proportion of direct flow (27 ± 9% vs 11 ± 4%, p < 0.01), increased proportion of delayed ejection flow (22 ± 9% vs 12 ± 2, p < 0.01) and increased proportion of residual volume after 2 consecutive cardiac cycles (64 ± 14 vs 34 ± 14%, p < 0.01), in their acute scan.
Conclusion
Following STEMI, increased in-plane KE, reduced direct flow and increased residual volume in the acute scan were all associated with adverse LV remodelling at 12 months. Our results highlight the clinical utility of acute 4D flow in prognostic stratification in patients following myocardial infarction.
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Reference10 articles.
1. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990;81(4):1161–72.
2. Stoll V, Hess AT, Eriksson J, Dyverfeldt P, Ebbers T, Myerson SG, et al. The kinetic energies of left ventricular 4D flow components correlate with established markers of prognosis and represent novel imaging biomarkers in both ischaemic and dilated cardiomyopathy. J Cardiovasc Magn Reson. 2016;18(S1):1–3.
3. Garg P, Crandon S, Swoboda PP, Fent GJ, Foley JRJ, Chew PG, et al. Left ventricular blood flow kinetic energy after myocardial infarction-insights from 4D flow cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2018. https://doi.org/10.1186/s12968-018-0483-6.
4. Garg P, Van Der Geest RJ, Swoboda PP, Crandon S, Fent GJ, Foley JRJ, et al. Left ventricular thrombus formation in myocardial infarction is associated with altered left ventricular blood flow energetics. Eur Heart J Cardiovasc Imaging. 2019;20(1):108–17.
5. Fihn SD, Blankenship JC, Alexander KP, Bittl JA, Byrne JG, Fletcher BJ, et al. 2014 ACC/AHA/AATS/PCNA/SCAI/STS focused update of the guideline for the diagnosis and management of patients with stable ischemic heart disease. Circulation. 2014;64(18):1929–49.