Feasibility of Wave Intensity Analysis from 4D Cardiovascular Magnetic Resonance Imaging Data

Author:

Sophocleous Froso1,Delchev Kiril12,De Garate Estefania12ORCID,Hamilton Mark C. K.2,Caputo Massimo12,Bucciarelli-Ducci Chiara134,Biglino Giovanni15ORCID

Affiliation:

1. Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK

2. University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK

3. Royal Brompton and Harefield Hospitals, Guys and St Thomas NHS Trust, London UB9 6JH, UK

4. School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, Kings College London, London WC2R 2LS, UK

5. National Heart and Lung Institute, Imperial College London, London SW7 2BX, UK

Abstract

Congenital heart defects (CHD) introduce haemodynamic changes; e.g., bicuspid aortic valve (BAV) presents a turbulent helical flow, which activates aortic pathological processes. Flow quantification is crucial for diagnostics and to plan corrective strategies. Multiple imaging modalities exist, with phase contrast magnetic resonance imaging (PC-MRI) being the current gold standard; however, multiple predetermined site measurements may be required, while 4D MRI allows for measurements of area (A) and velocity (U) in all spatial dimensions, acquiring a single volume and enabling a retrospective analysis at multiple locations. We assessed the feasibility of gathering hemodynamic insight into aortic hemodynamics by means of wave intensity analysis (WIA) derived from 4D MRI. Data were collected in n = 12 BAV patients and n = 7 healthy controls. Following data acquisition, WIA was successfully derived at three planes (ascending, thoracic and descending aorta) in all cases. The values of wave speed were physiological and, while the small sample limited any clinical interpretation of the results, the study shows the possibility of studying wave travel and wave reflection based on 4D MRI. Below, we demonstrate for the first time the feasibility of deriving wave intensity analysis from 4D flow data and open the door to research applications in different cardiovascular scenarios.

Funder

British Heart Foundation

Bristol & Weston Hospitals Charity

Bristol NIHR Biomedical Research Centre

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3