MVnet: automated time-resolved tracking of the mitral valve plane in CMR long-axis cine images with residual neural networks: a multi-center, multi-vendor study

Author:

Gonzales Ricardo A.ORCID,Seemann Felicia,Lamy Jérôme,Mojibian Hamid,Atar Dan,Erlinge David,Steding-Ehrenborg Katarina,Arheden Håkan,Hu Chenxi,Onofrey John A.,Peters Dana C.,Heiberg EinarORCID

Abstract

Abstract Background Mitral annular plane systolic excursion (MAPSE) and left ventricular (LV) early diastolic velocity (e’) are key metrics of systolic and diastolic function, but not often measured by cardiovascular magnetic resonance (CMR). Its derivation is possible with manual, precise annotation of the mitral valve (MV) insertion points along the cardiac cycle in both two and four-chamber long-axis cines, but this process is highly time-consuming, laborious, and prone to errors. A fully automated, consistent, fast, and accurate method for MV plane tracking is lacking. In this study, we propose MVnet, a deep learning approach for MV point localization and tracking capable of deriving such clinical metrics comparable to human expert-level performance, and validated it in a multi-vendor, multi-center clinical population. Methods The proposed pipeline first performs a coarse MV point annotation in a given cine accurately enough to apply an automated linear transformation task, which standardizes the size, cropping, resolution, and heart orientation, and second, tracks the MV points with high accuracy. The model was trained and evaluated on 38,854 cine images from 703 patients with diverse cardiovascular conditions, scanned on equipment from 3 main vendors, 16 centers, and 7 countries, and manually annotated by 10 observers. Agreement was assessed by the intra-class correlation coefficient (ICC) for both clinical metrics and by the distance error in the MV plane displacement. For inter-observer variability analysis, an additional pair of observers performed manual annotations in a randomly chosen set of 50 patients. Results MVnet achieved a fast segmentation (<1 s/cine) with excellent ICCs of 0.94 (MAPSE) and 0.93 (LV e’) and a MV plane tracking error of −0.10 ± 0.97 mm. In a similar manner, the inter-observer variability analysis yielded ICCs of 0.95 and 0.89 and a tracking error of −0.15 ± 1.18 mm, respectively. Conclusion A dual-stage deep learning approach for automated annotation of MV points for systolic and diastolic evaluation in CMR long-axis cine images was developed. The method is able to carefully track these points with high accuracy and in a timely manner. This will improve the feasibility of CMR methods which rely on valve tracking and increase their utility in a clinical setting.

Funder

Lund University

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference46 articles.

1. Carlsson M, Ugander M, Mosén H, Buhre T, Arheden H. Atrioventricular plane displacement is the major contributor to left ventricular pumping in healthy adults, athletes, and patients with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 2007;292(3):1452–9. https://doi.org/10.1152/ajpheart.01148.2006.

2. Nagueh SF, Smiseth OA, Appleton CP, Byrd I. Benjamin F, Dokainish H, Edvardsen T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, Marino P, Oh JK, Popescu B, Waggoner AD. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the american society of echocardiography and the European association of cardiovascular imaging. Eur Heart J 2016;17(12):1321–1360. https://doi.org/10.1093/ehjci/jew082

3. Seemann F, Baldassarre LA, Llanos-Chea F, Gonzales RA, Grunseich K, Hu C, Sugeng L, Meadows J, Heiberg E, Peters DC. Assessment of diastolic function and atrial remodeling by MRI - validation and correlation with echocardiography and filling pressure. Physiol Rep. 2018;6(17):13828. https://doi.org/10.14814/phy2.13828.

4. Roes SD, Hammer S, van der Geest RJ, Marsan NA, Bax JJ, Lamb HJ, Reiber JHC, de Roos A, Westenberg JJM. Flow assessment through four heart valves simultaneously using 3-dimensional 3-directional velocity-encoded magnetic resonance imaging with retrospective valve tracking in healthy volunteers and patients with valvular regurgitation. Invest Radiol. 2009;44:10. https://doi.org/10.1097/rli.0b013e3181ae99b5.

5. Seemann F, Heiberg E, Carlsson M, Gonzales RA, Baldassarre LA, Qiu M, Peters DC. Valvular imaging in the era of feature-tracking: a slice-following cardiac MR sequence to measure mitral flow. J Magn Reson Imag. 2020;51(5):1412–21. https://doi.org/10.1002/jmri.26971.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3