Radial self-navigated native magnetic resonance angiography in comparison to navigator-gated contrast-enhanced MRA of the entire thoracic aorta in an aortic patient collective

Author:

Correa Londono MartinaORCID,Trussardi Nino,Obmann Verena C.,Piccini Davide,Ith Michael,von Tengg-Kobligk Hendrik,Jung Bernd

Abstract

Abstract Background The native balanced steady state with free precession (bSSFP) magnetic resonance angiography (MRA) technique has been shown to provide high diagnostic image quality for thoracic aortic disease. This study compares a 3D radial respiratory self-navigated native MRA (native-SN-MRA) based on a bSSFP sequence with conventional Cartesian, 3D, contrast-enhanced MRA (CE-MRA) with navigator-gated respiration control for image quality of the entire thoracic aorta. Methods Thirty-one aortic native-SN-MRA were compared retrospectively (63.9 ± 10.3 years) to 61 CE-MRA (63.1 ± 11.7 years) serving as a reference standard. Image quality was evaluated at the aortic root/ascending aorta, aortic arch and descending aorta. Scan time was recorded. In 10 patients with both MRA sequences, aortic pathologies were evaluated and normal and pathologic aortic diameters were measured. The influence of artifacts on image quality was analyzed. Results Compared to the overall image quality of CE-MRA, the overall image quality of native-SN-MRA was superior for all segments analyzed (aortic root/ascending, p < 0.001; arch, p < 0.001, and descending, p = 0.005). Regarding artifacts, the image quality of native-SN-MRA remained superior at the aortic root/ascending aorta and aortic arch before and after correction for confounders of surgical material (i.e., susceptibility-related artifacts) (p = 0.008 both) suggesting a benefit in terms of motion artifacts. Native-SN-MRA showed a trend towards superior intraindividual image quality, but without statistical significance. Intraindividually, the sensitivity and specificity for the detection of aortic disease were 100% for native-SN-MRA. Aortic diameters did not show a significant difference (p = 0.899). The scan time of the native-SN-MRA was significantly reduced, with a mean of 05:56 ± 01:32 min vs. 08:51 ± 02:57 min in the CE-MRA (p < 0.001). Conclusions Superior image quality of the entire thoracic aorta, also regarding artifacts, can be achieved with native-SN-MRA, especially in motion prone segments, in addition to a shorter acquisition time.

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference26 articles.

1. Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, Casey DE Jr, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with Thoracic Aortic Disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Circulation. 2010;121(13):e266-369.

2. Liu Q, Lu JP, Wang F, Wang L, Tian JM. Three-dimensional contrast-enhanced MR angiography of aortic dissection: a pictorial essay. Radiographics. 2007;27(5):1311–21.

3. Carr JC, Caroll TJ. Magnetic resonance angiography: principles and applications. Magnetic resonance angiography. 1: Springer-Verlag New York; 2012. p. 412.

4. Francois CJ, Tuite D, Deshpande V, Jerecic R, Weale P, Carr JC. Unenhanced MR angiography of the thoracic aorta: initial clinical evaluation. AJR Am J Roentgenol. 2008;190(4):902–6.

5. Krishnam MS, Tomasian A, Malik S, Desphande V, Laub G, Ruehm SG. Image quality and diagnostic accuracy of unenhanced SSFP MR angiography compared with conventional contrast-enhanced MR angiography for the assessment of thoracic aortic diseases. Eur Radiol. 2010;20(6):1311–20.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3