Existing and Emerging Approaches to Risk Assessment in Patients with Ascending Thoracic Aortic Dilatation

Author:

Anfinogenova Nina D.ORCID,Sinitsyn Valentin E.ORCID,Kozlov Boris N.,Panfilov Dmitry S.ORCID,Popov Sergey V.,Vrublevsky Alexander V.ORCID,Chernyavsky Alexander,Bergen Tatyana,Khovrin Valery V.,Ussov Wladimir Yu.ORCID

Abstract

Ascending thoracic aortic aneurysm is a life-threatening disease, which is difficult to detect prior to the occurrence of a catastrophe. Epidemiology patterns of ascending thoracic aortic dilations/aneurysms remain understudied, whereas the risk assessment of it may be improved. The electronic databases PubMed/Medline 1966–2022, Web of Science 1975–2022, Scopus 1975–2022, and RSCI 1994–2022 were searched. The current guidelines recommend a purely aortic diameter-based assessment of the thoracic aortic aneurysm risk, but over 80% of the ascending aorta dissections occur at a size that is lower than the recommended threshold of 55 mm. Moreover, a 55 mm diameter criterion could exclude a vast majority (up to 99%) of the patients from preventive surgery. The authors review several visualization-based and alternative approaches which are proposed to better predict the risk of dissection in patients with borderline dilated thoracic aorta. The imaging-based assessments of the biomechanical aortic properties, the Young’s elastic modulus, the Windkessel function, compliance, distensibility, wall shear stress, pulse wave velocity, and some other parameters have been proposed to improve the risk assessment in patients with ascending thoracic aortic aneurysm. While the authors do not argue for shifting the diameter threshold to the left, they emphasize the need for more personalized solutions that integrate the imaging data with the patient’s genotypes and phenotypes in this heterogeneous pathology.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3