EUV signals associated with O+ ions observed from ISS-IMAP/EUVI in the nightside ionosphere

Author:

Nakano Shin’yaORCID,Hozumi Yuta,Saito Akinori,Yoshikawa Ichiro,Yamazaki Atsushi,Yoshioka Kazuo,Murakami Go

Abstract

AbstractThe extreme ultraviolet (EUV) imager, EUVI-B, on board the International Space Station (ISS) under the International Space Station–ionosphere-mesosphere-atmosphere plasmasphere cameras (ISS-IMAP) mission was originally intended to observe EUV emissions at 83.4 nm scattered by $${\mathrm O}^+$$ O + ions. During the mission, EUVI-B occasionally detected evident EUV signals in the umbra of the Earth. However, the source of the signals has not been verified. To evaluate the effect of the 83.4 nm EUV, we conduct a Monte Carlo simulation which considers multiple scattering of the 83.4 nm EUV by $${\mathrm O}^+$$ O + ions. In addition, we modeled the contribution of the 91.1 nm emission, which is due to recombination of $${\mathrm O}^{+}$$ O + ions and electrons, because the 91.1 nm EUV might affect the measurement from EUVI-B due to the wavelength range covered. The results suggest that the effect of the 83.4 nm EUV is likely to be negligible while the 91.1 nm EUV explains the observations from EUVI-B morphologically and quantitatively. We therefore conclude that the EUV signals observed by EUVI-B in the umbra of the Earth can largely be attributed to 91.1 nm emission due to recombination. This conclusion would facilitate the use of the EUVI-B data for reconstructing the $${\mathrm O}^+$$ O + density.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3