$$\textrm{O}^+$$ density distribution in the nightside ionosphere reconstructed from ISS-IMAP/EUVI data
-
Published:2024-01-02
Issue:1
Volume:76
Page:
-
ISSN:1880-5981
-
Container-title:Earth, Planets and Space
-
language:en
-
Short-container-title:Earth Planets Space
Author:
Nakano Shin’yaORCID, Hozumi Yuta, Saito Akinori, Yoshikawa Ichiro, Yamazaki Atsushi, Yoshioka Kazuo, Murakami Go
Abstract
AbstractThe $$\textrm{O}^+$$
O
+
density distribution in the nightside ionosphere has been reconstructed from extreme ultraviolet (EUV) images taken by the EUVI-B imager of the International Space Station Ionosphere, Mesosphere, upper Atmosphere, and Plasmasphere mapping (ISS-IMAP) cameras. The EUVI-B imager covers the wavelength range from about 70 nm to 110 nm and mainly observes the 91.1 nm emission from the recombination of $$\textrm{O}^+$$
O
+
ions and electrons. Assuming that the electron density is equal to the $$\textrm{O}^+$$
O
+
density in the F-region where the imager observes, the EUV intensity observed by EUVI-B is approximately proportional to the line-of-sight integral of the square of the $$\textrm{O}^+$$
O
+
density. This enables us to estimate the $$\textrm{O}^+$$
O
+
density distribution in the F-region from a sequence of EUVI-B data in each International Space Station (ISS) orbit with a Bayesian method. We demonstrate the reconstruction of the $$\textrm{O}^+$$
O
+
distribution. In particular, the $$\textrm{O}^+$$
O
+
density structure of the equatorial ionization anomaly (EIA) in the vicinity of an ISS orbit is obtained.
Graphical Abstract
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Reference22 articles.
1. Alken P, Thébault E, Beggan CD, Amit H, Aubert J, Baerenzung J, Bondar TN, Brown WJ, Califf S, Chambodut A, Chulliat A, Cox GA, Finlay CC, Fournier A, Gillet N, Grayver A, Hammer MD, Holschneider M, Huder L, Hulot G, Jager T, Kloss C, Korte M, Kuang W, Kuvshinov A, Langlais B, Léger J-M, Lesur V, Livermore PW, Lowes FJ, Macmillan S, Magnes W, Mandea M, Marsal S, Matzka J, Metman MC, Minami T, Morschhauser A, Mound JE, Nair M, Nakano S, Olsen N, Pavón-Carrasco FJ, Petrov VG, Ropp G, Rother M, Sabaka TJ, Sanchez S, Saturnino D, Schnepf NR, Shen X, Stolle C, Tangborn A, Tøffner-Clausen L, Toh H, Torta JM, Varner J, Vervelidou F, Vigneron P, Wardinski I, Wicht J, Woods A, Yang Y, Zeren Z, Zhou B (2021) International geomagnetic reference field: the thirteenth generation. Earth Planets Space 73:49. https://doi.org/10.1186/s40623-020-01288-x 2. Appleton EV (1946) Two anomalies in the ionosphere. Nature 157:691 3. Bilitza D, Altadill D, Zhang Y, Mertens C, Truhlik V, Richards P, McKinnell L-A, Reinisch B (2014) The international reference ionosphere 2012: a model of international collaboration. J Space Weather Space Clim 4:A07. https://doi.org/10.1051/swsc/2014004 4. Bishop CM (2006) Pattern recognition and machine learning. Springer, New York 5. Casella G (1985) An introduction to empirical Bayes data analysis. Am Stat 39:83–87
|
|