Abstract
AbstractWe make trial binary forecasts for the Kurile–Japan subduction zone for the period 1988–2014 by hypothesizing that seismic quiescence (i.e., the absence of earthquakes of M ≥ 5 for a minimum period of Tq) is a precursor of a large (7.5 ≤ Mw < 8.5) earthquake in the coming period Ta within a radius R of the quiescence. We evaluate the receiver-operating-characteristic diagram constructed using a range of forecast models specified by (Tq, R, Ta). A forecast experiment targeting eight large earthquakes in the studied spacetime suggests that the risk of a large earthquake is modestly (probability gain G ~ 2) but significantly (p-value less than 5%) heightened for several years following a long quiescent period of Tq ≥ 9 years, within several tens of kilometers of the quiescence. We then attempt cross-validation, where we use half the data for training [i.e., optimization of (Tq, R, Ta)] and the remaining half for evaluation. With only four target earthquakes available for evaluation of the forecasts in each of the learning and evaluation periods, our forecast scheme did not pass the cross-validation test (with a criterion that the p-value is less than 5%). Hence, we cannot formally deny the possibility that our positive results for the overall period are a ghost arising from over-fitting. However, through detailed comparison of optimal models in the overall test with those in the cross-validation tests, we argue that severe over-fitting is unlikely involved for the modest G of ~ 2 obtained in the overall test. There is thus a reasonable chance that the presently tested type of quiescence will pass the cross-validation test when more target earthquakes become available in the near future. In the meantime, we find that G improves to ~ 5 when target earthquakes are limited to 8 ≤ Mw < 8.5, though we cannot say anything about the possible involvement of over-fitting because we have only three such very large target earthquakes.
Funder
The Second Earthquake and Volcano Hazards Observation and Research Program
Tokio Marine Kagami Memorial Foundation
Publisher
Springer Science and Business Media LLC
Subject
Space and Planetary Science,Geology
Reference32 articles.
1. Aki K (1981) A probabilistic synthesis of precursory phenomena. In: Simpson DW, Richards PG (eds) Earthquake Prediction (Maurice Ewing Series 4). American Geophysical Union, Washington, D.C., pp 566–574
2. Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4(3):1027. https://doi.org/10.1029/2001GC000252
3. Hardebeck JL, Felzer KR, Michael AJ (2008) Improved tests reveal that the accelerating moment release hypothesis is statistically insignificant. J Geophys Res 113:B08310. https://doi.org/10.1029/2007JB005410
4. Inouye W (1965) On the seismicity in the epicentral region and its neighborhood before the Niigata earthquake. Kenshin-jiho (Quarterly Journal of Seismology) 29:139–144 (in Japanese)
5. Kanamori H (1981) The nature of seismicity patterns before large earthquakes. In: Simpson DW, Richards PG (eds) Earthquake Prediction (Maurice Ewing Series 4). American Geophysical Union, Washington D. C., pp 1–19
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献