A Bayesian Approach for Forecasting the Probability of Large Earthquakes Using Thermal Anomalies from Satellite Observations

Author:

Jiao Zhonghu1ORCID,Shan Xinjian1

Affiliation:

1. State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China

Abstract

Studies have demonstrated the potential of satellite thermal infrared observations to detect anomalous signals preceding large earthquakes. However, the lack of well-defined precursory characteristics and inherent complexity and stochasticity of the seismicity continue to impede robust earthquake forecasts. This study investigates the potential of pre-seismic thermal anomalies, derived from five satellite-based geophysical parameters, i.e., skin temperature, air temperature, total integrated column water vapor burden, outgoing longwave radiation (OLR), and clear-sky OLR, as valuable indicators for global earthquake forecasts. We employed a spatially self-adaptive multiparametric anomaly identification scheme to refine these anomalies, and then estimated the posterior probability of an earthquake occurrence given observed anomalies within a Bayesian framework. Our findings reveal a promising link between thermal signatures and global seismicity, with elevated forecast probabilities exceeding 0.1 and significant probability gains in some strong earthquake-prone regions. A time series analysis indicates probability stabilization after approximately six years. While no single parameter consistently dominates, each contributes precursory information, suggesting a promising avenue for a multi-parametric approach. Furthermore, novel anomaly indices incorporating probabilistic information significantly reduce false alarms and improve anomaly recognition. Despite remaining challenges in developing dynamic short-term probabilities, rigorously testing detection algorithms, and improving ensemble forecast strategies, this study provides compelling evidence for the potential of thermal anomalies to play a key role in global earthquake forecasts. The ability to reliably estimate earthquake forecast probabilities, given the ever-present threat of destructive earthquakes, holds considerable societal and ecological importance for mitigating earthquake risk and improving preparedness strategies.

Funder

Independent Research Projects of State Key Laboratory of Earthquake Dynamics

National Nonprofit Fundamental Research Grant of Institute of Geology, China Earthquake Administration

National Key Research and Development Program of China

Publisher

MDPI AG

Reference62 articles.

1. The complex dynamics of earthquake fault systems: New approaches to forecasting and nowcasting of earthquakes;Rundle;Rep. Prog. Phys.,2021

2. Intermediate- and long-term earthquake prediction;Sykes;Proc. Natl. Acad. Sci. USA,1996

3. An Operational Earthquake Forecasting Experiment for Israel: Preliminary Results;Falcone;Front. Earth Sci.,2021

4. Pre-seismic anomalies from optical satellite observations: A review;Jiao;Nat. Hazards Earth Syst. Sci.,2018

5. Geospace perturbations induced by the Earth: The state of the art and future trends;Spogli;Phys. Chem. Earth Parts A/B/C,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3