Abstract
AbstractThe Levantine Iron Age anomaly (LIAA) is a regional short-decadal geomagnetic strength field variation located at the Levantine region characterized by high intensities with maximum virtual axial dipole moments around 190 ZAm2. It has been constrained by archeomagnetic data coming from Eastern Europe and Western Asia between 1050 and 700 BC. The LIAA can be related to a fast and spatially localized geomagnetic positive anomaly (spike) at the Earth’s surface. In this study, we model the LIAA by using a Fisher–von Mises function that fits the most recent archeomagnetic intensity database in the region. A spherical harmonic analysis is implemented for this spike function to perturb a base model in order to build a global reconstruction (perturbed-model) that reproduces the spatial and temporal characteristics of the LIAA. Our results show the importance of harmonic degrees from n = 3–4 to n = 20 to reconstruct the anomaly extension suggested by the database. Two maxima linked with the LIAA are reproduced by our global perturbed-model at the Levantine region at 950 BC and 750 BC. A third maxima in intensity around 500 BC is also observed, affecting the whole Europe.
Graphical Abstract
Funder
Ministerio de Ciencia e Innovación
Ministerio de Universidades
Publisher
Springer Science and Business Media LLC
Subject
Space and Planetary Science,Geology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献