Geomagnetic Field Intensity During the First Millennium BCE From Royal Judean Storage Jars: Constraining the Duration of the Levantine Iron Age Anomaly

Author:

Hassul E.1ORCID,Shaar R.1ORCID,Vaknin Y.12ORCID,Agnon A.1ORCID,Gallet Y.3ORCID,Leibner U.4,Sabar R.4,Freud L.5ORCID,Sandhaus D.6ORCID,Lipschits O.5

Affiliation:

1. The Institute of Earth Sciences The Hebrew University of Jerusalem Jerusalem Israel

2. Institute of Jewish Studies University of Bern Bern Switzerland

3. Université Paris Cité Institut de Physique du Globe de Paris CNRS Paris France

4. The Institute of Archaeology The Hebrew University of Jerusalem Jerusalem Israel

5. Institute of Archaeology Tel Aviv University Tel Aviv Israel

6. Israel Antiquities Authority Jerusalem Israel

Abstract

AbstractThe rich and extensively studied archaeological record of the Near East provides an opportunity to develop a comprehensive archaeomagnetic dataset for exploring the behavior of the geomagnetic field with high precision. The Levantine archaeomagnetic curve (LAC) project is an ongoing effort to develop a continuous high‐resolution geomagnetic intensity curve for the Levant and Mesopotamia. The first version of the LAC covered the period between 3000 and 550 BCE. Here, we report archaeointensity data from 169 samples compiled into 32 groups dating between the 7th and the 1st centuries BCE aiming at extending the LAC up to the end of the first millennium BCE. Twenty‐two groups are assembled from storage jar handles bearing different types of royal seal impressions, which were used in Judah as part of a taxation administrative system. These groups are combined with 10 other groups of pottery assemblages, three of which are from Hellenistic destruction layers dated using radiocarbon and coins. The new curve shows that the Levantine Iron Age Anomaly (LIAA) spanned 550 years (1100 ‐ 550 BCE) and that the rate of decline during the last spike around 600 BCE could have reached ∼0.6 μT/year. During the 6th century, the virtual axial dipole moment (VADM) dropped from 160 ZAm2 to 125 ZAm2 after which field intensity only slightly increased to 135 ZAm2, until another considerable decline to ∼90 ZAm2 during the 3rd to the 1st centuries BCE. We highlight the archaeomagnetic implication of the new curve in inferring the relative chronological relationship between different stamp types.

Funder

Horizon 2020 Framework Programme

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3