Fully dynamic earthquake sequence simulation of a fault in a viscoelastic medium using a spectral boundary integral equation method: does interseismic stress relaxation promote aseismic transients?

Author:

Miyake Yuki,Noda HiroyukiORCID

Abstract

AbstractAlong subduction interfaces or some major faults, a seismogenic layer in the upper crust is underlain by a zone of slow-slip events (SSEs) and tremors, and seismicity disappears at greater depths. The transition between seismogenic and aseismic behavior may be caused by changes in the frictional properties of the fault or changes in viscoelastic properties of the surrounding medium. Although aseismic transients have been numerically generated in previous studies by changing the frictional properties and compared to SSEs, the effect of viscoelasticity on the transition remains to be studied. In this study, we implemented interseismic viscoelastic stress relaxation in a simulation code for two-dimensional antiplane fully dynamic earthquake sequences in a uniform elastic material based on a spectral boundary integral equation method. In the implementation, we developed a suitable algorithm in which the viscoelastic relaxation is calculated by evolution of an “effective slip,” which gives viscoelastic stress change on the fault if convolved with a static Green’s function. We conducted parametric studies for a fault with a rate-weakening patch on two parameters: viscoelastic relaxation time $$t_{c}$$tc and characteristic length of the state evolution in the rate- and state-dependent friction law L. The behavior of the simulated fault can be classified into four classes, earthquakes (EQ), aseismic transients (AT), stable sliding (SS), and stuck (ST), in which the central part of the rate-weakening patch has a diminishingly small slip rate and is permanently locked. A phase diagram of the fault behavior shows that there are two different types of seismogenic–aseismic transition. As L increases, an EQ patch changes to an AT patch before becoming an SS patch, as has been reported in previous studies in an elastic limit. The boundary between AT and SS can be explained via linear stability analysis of a system composed of a spring, a dashpot, and sliders. As $$t_{c}$$tc decreases, the recurrence interval of the earthquakes diverges, and an EQ patch changes to an ST patch unless L is within a narrow range. Therefore, the transition associated with SSEs and tremors is dominated by changes in frictional properties rather than changes in viscoelastic properties.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3