Dynamic earthquake sequence simulation with an SBIEM accounting for interseismic poroelastic rebound

Author:

Noda HiroyukiORCID

Abstract

AbstractAfterslip inside a coseismic slip patch is rarely observed, though some previous studies suggest that it is driven by poroelastic rebound (PER). These studies assume constant frictional strength, whereas time-dependent strengthening (healing) of a fault is expected from laboratory experiments, which provide a basis for a rate- and state-dependent friction law (RSF). In this study, quasistatic poroelasticity (PE) was implemented in a dynamic earthquake sequence simulation using a spectral boundary integral equation method, and the effect of PER on the behavior of a fault governed by RSF was examined. Spatio-temporal convolution for PE would significantly affect the resolution of the numerical simulation affordable. This problem has been resolved by numerical approximation of the time dependency of Green’s function of PE in the wavenumber domain, definition of memory variables, and reformulation of the temporal convolution into ordinary differential equations of them. In the novel method, the additional numerical costs due to PE are negligible. A planar fault with a rate-weakening patch embedded in the rate-strengthening region was simulated. Because it is the healing of the fault that competes against PER, both the aging law and slip law were examined, which have different characteristics in the evolution of the fault strength. The simulation results indicate that PER causes postseismic loading to the patch, but the healing efficiently suppresses afterslip not only for the aging law, but also for the slip law. When cases with different friction laws are compared, the healing is more significant for the aging law, which has log-$$t$$ t strengthening at a limit of $$V\to 0$$ V 0 . However, the effect of PER on the slip rate is minor for the slip law. The slip law yields additional healing if the fault is accelerated by loading owing to PER. The simulation results are consistent with the absence of afterslip within the coseismic slip patches in the observations. Graphical Abstract

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3