Behavior of magmatic components in fumarolic gases related to the 2018 phreatic eruption at Ebinokogen Ioyama volcano, Kirishima Volcanic Group, Kyushu, Japan

Author:

Ohba Takeshi,Yaguchi Muga,Tsunogai Urumu,Ito Masanori,Shingubara Ryo

Abstract

AbstractDirect sampling and analysis of fumarolic gas was conducted at Ebinokogen Ioyama volcano, Japan, between December 2015 and July 2020. Notable changes in the chemical composition of gases related to volcanic activity included a sharp increase in SO2 and H2 concentrations in May 2017 and March 2018. The analyses in March 2018 immediately preceded the April 2018 eruption at Ioyama volcano. The isotopic ratios of H2O in fumarolic gas revealed the process of formation. Up to 49% high-enthalpy magmatic vapor mixed with 51% of cold local meteoric water to generate coexisting vapor and liquid phases at 100–160 °C. Portions of the vapor and liquid phases were discharged as fumarolic gases and hot spring water, respectively. The CO2/SO2 ratio of the fumarolic gas was higher than that estimated for magmatic vapor due to SO2 hydrolysis during the formation of the vapor phase. When the flux of the magmatic vapor was high, effects of hydrolysis were small resulting in low CO2/SO2 ratios in fumarolic gases. The high apparent equilibrium temperature defined for reactions involving SO2, H2S, H2 and H2O, together with low CO2/SO2 and H2S /SO2 ratios were regarded to be precursor signals to the phreatic eruption at Ioyama volcano. The apparent equilibrium temperature increased rapidly in May 2017 and March 2018 suggesting an increased flux of magmatic vapor. Between September 2017 and January 2018, the apparent equilibrium temperature was low suggesting the suppression of magmatic vapor flux. During this period, magmatic eruptions took place at Shinmoedake volcano 5 km away from Ioyama volcano. We conclude that magma sealing and transport to Shinmoedake volcano occurred simultaneously in the magma chamber beneath Ioyama volcano.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3