Deep low-frequency earthquake activity associated with the 2018 eruptions in the Kirishima volcanic complex, Japan

Author:

Kurihara RyoORCID,Kato Aitaro

Abstract

AbstractDeep low-frequency (DLF) earthquakes have occurred at depths of 10–30 km in the Kirishima volcanic complex, Japan. Here, we investigate the DLF earthquake activity that was associated with the 2018 eruptions, compare these DLF earthquakes with those associated with the 2011 eruptions, and provide inferences on magmatic fluid ascension during these two eruptions. We apply a new matched-filter method to the continuous waveform data from the 2017–2018 period to comprehensively detect the DLF earthquake activity surrounding the 2018 eruptions. This new method can detect microearthquakes using a single seismic station based on an index that is computed as the product of mutual information and the correlation coefficient to measure the similarity between the template and target waveforms. We perform the same analysis using the 2010–2011 waveform data for comparison with the DLF earthquake activity associated with the 2011 eruptions. We detect 75 DLF earthquakes at approximately 25 km depth during the 2017–2018 period, whereas we detect 1302 DLF earthquakes at similar depths during the 2010–2011 period. Although the number of detected 2017–2018 events is small, we identify two swarms of DLF earthquake activity in March and July 2017. The March 2017 swarm coincides with the appearance of mud pots and jet fumaroles at the surface, and the July 2017 swarm coincides with the initiation of crustal deformation, which indicates the inflation of a deep magma reservoir. Furthermore, the occurrence rate of DLF earthquakes increased slightly after the March 2018 eruptions. Although the occurrence rate of DLF earthquakes associated with the 2018 eruptions was much lower than that associated with the 2011 eruptions, the slight increase in DLF earthquakes during the 2018 eruptions implies a connection between the deep magmatic fluid ascension and shallow volcanic unrest in 2018, which is similar to that observed during the 2011 eruptions. Such a close temporal relationship between the DLF earthquakes and surface volcanic activity suggests that the pressure disturbance within volcanic conduits propagates rapidly from depth. Graphical Abstract

Funder

Core Research for Evolutional Science and Technology

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3