Simultaneous equatorial plasma bubble observation using amplitude scintillations from GNSS and LEO satellites in low-latitude region

Author:

Seechai Khanitin,Myint Lin Min MinORCID,Hozumi Kornyanat,Nishioka Michi,Saito Susumu,Yamamoto Mamoru,Supnithi Pornchai

Abstract

AbstractThis study estimates the scale sizes of the plasma density irregularities and the longitudinal width associated with equatorial plasma bubbles (EPBs) in equatorial and low-latitude regions. By analyzing amplitude scintillation S4 indices and total electron content (TEC) measured from low earth orbit (LEO) satellite’s beacon signals with 400 MHz and Global Navigation Satellite System (GNSS) L1/E1 signals with 1575.42 MHz, recorded by receivers at the KMITL station in Bangkok, Thailand (geographic; 13.73° N, 100.77°E, magnetic: 7.26°N), we investigate the characteristics of these irregularities. We collected data of 154 LEO satellite pass events during nighttime on 21 disturbed days in four equinoctial months in 2021. Based on the presence or absence of the scintillation effects on GNSS and LEO beacon signals, the events are categorized into four classes to estimate the scale size of the plasma density irregularities. The analysis suggests that events with both GNSS and LEO scintillations, as well as events with GNSS scintillation alone, occur predominantly before midnight assuming the presence of the small-scale size of the irregularities within EPB. However, events with only LEO scintillation occur throughout the whole night and some events are observed before the events with both GNSS and LEO scintillations. Post-sunset LEO scintillation alone may be attributed to the onset of EPBs developing at low altitude, while post-midnight LEO scintillation events near the magnetic equator, observed during periods of low GNSS Rate of TEC Index (ROTI) values, are associated with bottom-side ionospheric irregularities but are not linked with EPB. The findings are consistent with previous researches on the generation and decay of electron density irregularities within plasma bubbles. However, this study provides new insights by using specific data sets and analysis techniques, offering a more comprehensive understanding of the association of LEO scintillations with bottom-side ionospheric irregularities near the magnetic equator, not observed in the ROTI map. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3