Locating hydrothermal fluid injection of the 2018 phreatic eruption at Kusatsu-Shirane volcano with volcanic tremor amplitude

Author:

Yamada TaishiORCID,Kurokawa Aika K.,Terada Akihiko,Kanda Wataru,Ueda Hideki,Aoyama Hiroshi,Ohkura Takahiro,Ogawa Yasuo,Tanada Toshikazu

Abstract

AbstractKusatsu-Shirane volcano hosts numerous thermal springs, fumaroles, and the crater lake of Yugama. Hence, it has been a particular study field for hydrothermal systems and phreatic eruptions. On 23 January 2018, a phreatic eruption occurred at the Motoshirane cone of Kusatsu-Shirane, where no considerable volcanic activity had been reported in observational and historical records. To understand the eruption process of this unique event, we analyzed seismic, tilt, and infrasound records. The onset of surface activity accompanied by infrasound signal was preceded by volcanic tremor and inflation of the volcano for ~ 2 min. Tremor signals with a frequency band of 5–20 Hz remarkably coincide with the rapid inflation. We apply an amplitude source location method to seismic signals in the 5–20 Hz band to estimate tremor source locations. Our analysis locates tremor sources at 1 km north of Motoshirane and at a depth of 0.5–1 km from the surface. Inferred source locations correspond to a conductive layer of impermeable cap-rock estimated by magnetotelluric investigations. An upper portion of the seismogenic region suggests hydrothermal activity hosted beneath the cap-rock. Examined seismic signals in the 5–20 Hz band are typically excited by volcano-tectonic events with faulting mechanism. Based on the above characteristics and background, we interpret that excitation of examined volcanic tremor reflects small shear fractures induced by sudden hydrothermal fluid injection to the cap-rock layer. The horizontal distance of 1 km between inferred tremor sources and Motoshirane implies lateral migration of the hydrothermal fluid, although direct evidence is not available. Kusatsu-Shirane has exhibited unrest at the Yugama lake since 2014. However, the inferred tremor source locations do not overlap active seismicity beneath Yugama. Therefore, our result suggests that the 2018 eruption was triggered by hydrothermal fluid injection through a different pathway from that has driven unrest activities at Yugama.

Funder

Ministry of Education, Culture, Sports, Science, and Technology

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3