Natural processes leading to large, pre-historic hydrothermal eruptions in geothermal areas: Rotokawa geothermal field, New Zealand

Author:

Montanaro Cristian12,Cronin Shane J.2,Lerner Geoffrey A.3,Simpson Mark P.4,Brooks-Clarke Isabelle2,Swanney Gina2,Milicich Sarah D.5,Calibugan Aimee6,Bardsley Candice6,Scheu Bettina1

Affiliation:

1. 1Ludwig-Maximilians-Universität München, Theresienstrasse 41, 80333 Munich, Germany

2. 2School of Environment, University of Auckland, Science Centre, Building 302 23 Symonds Street, Auckland Central, New Zealand

3. 3Instituto de Geofísica, Universidad Nacional Autónoma de México, Coyoacán, 04150 CDMX, Mexico

4. 4GNS Science, Wairakei Research Centre, Taupo 3352, New Zealand

5. 5GNS Science, Avalon Research Centre, Lower Hutt 5010, New Zealand

6. 6Mercury NZ Ltd., PO Box 245, Rotorua 3040, New Zealand

Abstract

Hydrothermal eruptions are the most violent and hazardous phenomena within geothermal fields. The largest of these may produce kilometer-sized craters and breccia deposits that are tens of meters thick. The geological and hydrothermal priming that leads to these types of eruptions is poorly understood. To understand large hydrothermal eruptions, we investigated a series of prehistoric events at the Rotokawa geothermal field in New Zealand. By revising the stratigraphy and distribution of hydrothermal breccia deposits and correlating these with componentry, crater morphology, and subsurface geological structure, we estimated the frequency, priming processes, triggers, and dynamics of multiple eruptions. Seventeen large hydrothermal eruptions occurred centuries to millennia apart in the period from ca. 22 cal ka B.P. to ca. 3.4 cal ka B.P. Of six hydrothermal eruptions since ca. 7 ka, four produced oval-shaped craters up to 2 km in diameter, creating a broad, shallow depression within the geothermal field. The two youngest eruptions occurred northeast of earlier eruption centers and have narrower and elongated vents. We infer that in the central depression, newly formed craters rimmed by breccia deposits and high-relief country rock hosted temporary lakes tens of meters deep. Crater-lake breakout(s) and/or seismic events caused sudden pressure reduction above the hydrothermal aquifer, triggering hydrothermal eruptions. Northeast of the basin, hydrothermal alteration produced caprocks above intensively fractured areas. In this case, earthquakes are the most likely trigger for cap-rupture and eruption. All eruptions excavated shallow and large craters mostly within partially altered Oruanui Formation and pre-fragmented breccias. The size and localization of the eruptions was likely due to a combination of (1) availability of undisturbed porous ignimbrite hosting large thermal aquifers, (2) efficient crater excavation within or alongside pre-fragmented breccia, and (3) the location of fracture and fault zones that channeled deep fluid upflow, favoring priming processes. This study highlights how an interplay of tectonic, magmatic, and hydrologic processes is responsible for the timing, dynamics, and ultimate size of hydrothermal eruptions in geothermal fields. Some events may be very large and destructive depending on the right priming and geological conditions.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3