Investigating vaccine-induced immunity and its effect in mitigating SARS-CoV-2 epidemics in China

Author:

Liu Hengcong,Zhang Juanjuan,Cai Jun,Deng Xiaowei,Peng Cheng,Chen Xinghui,Yang Juan,Wu Qianhui,Chen Xinhua,Chen Zhiyuan,Zheng Wen,Viboud Cécile,Zhang Wenhong,Ajelli Marco,Yu Hongjie

Abstract

Abstract Background To allow a return to a pre-COVID-19 lifestyle, virtually every country has initiated a vaccination program to mitigate severe disease burden and control transmission. However, it remains to be seen whether herd immunity will be within reach of these programs. Methods We developed a compartmental model of SARS-CoV-2 transmission for China, a population with low prior immunity from natural infection. Two vaccination programs were tested and model-based estimates of the immunity level in the population were provided. Results We found that it is unlikely to reach herd immunity for the Delta variant given the relatively low efficacy of the vaccines used in China throughout 2021 and the lack of prior natural immunity. We estimated that, assuming a vaccine efficacy of 90% against the infection, vaccine-induced herd immunity would require a coverage of 93% or higher of the Chinese population. However, even when vaccine-induced herd immunity is not reached, we estimated that vaccination programs can reduce SARS-CoV-2 infections by 50–62% in case of an all-or-nothing vaccine model and an epidemic starts to unfold on December 1, 2021. Conclusions Efforts should be taken to increase population’s confidence and willingness to be vaccinated and to develop highly efficacious vaccines for a wide age range.

Funder

the Key Program of the National Natural Science Foundation of China

Collaboration for Leadership in Applied Health Research and Care - Greater Manchester

Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3