Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase

Author:

Kim Sujin,Baek Seung-Ho,Lee Kyusung,Hahn Ji-Sook

Abstract

Abstract Background Cellulosic biomass is considered as a promising alternative to fossil fuels, but its recalcitrant nature and high cost of cellulase are the major obstacles to utilize this material. Consolidated bioprocessing (CBP), combining cellulase production, saccharification, and fermentation into one step, has been proposed as the most efficient way to reduce the production cost of cellulosic bioethanol. In this study, we developed a cellulolytic yeast consortium for CBP, based on the surface display of cellulosome structure, mimicking the cellulolytic bacterium, Clostridium thermocellum. Results We designed a cellulolytic yeast consortium composed of four different yeast strains capable of either displaying a scaffoldin (mini CipA) containing three cohesin domains derived from C. thermocellum, or secreting one of the three types of cellulases, C. thermocellum CelA (endoglucanase) containing its own dockerin, Trichoderma reesei CBHII (exoglucanase) fused with an exogenous dockerin from C. thermocellum, or Aspergillus aculeatus BGLI (β-glucosidase). The secreted dockerin-containing enzymes, CelA and CBHI, were randomly assembled to the surface-displayed mini CipA via cohesin-dockerin interactions. On the other hand, BGLI was independently assembled to the cell surface since we newly found that it already has a cell adhesion characteristic. We optimized the cellulosome activity and ethanol production by controlling the combination ratio among the four yeast strains. A mixture of cells with the optimized mini CipA:CelA:CBHII:BGLI ratio of 2:3:3:0.53 produced 1.80 g/l ethanol after 94 h, indicating about 20% increase compared with a consortium composed of an equal amount of each cell type (1.48 g/l). Conclusions We produced cellulosic ethanol using a cellulolytic yeast consortium, which is composed of cells displaying mini cellulosomes generated via random assembly of CelA and CBHII to a mini CipA, and cells displaying BGLI independently. One of the advantages of this system is that ethanol production can be easily optimized by simply changing the combination ratio of the different populations. In addition, there is no limitation on the number of enzymes to be incorporated into this cellulosome structure. Not only cellulases used in this study, but also any other enzymes, including cellulases and hemicellulases, could be applied just by fusing dockerin domains to the enzymes.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3