Automated assay for screening the enzymatic release of reducing sugars from micronized biomass

Author:

Navarro David,Couturier Marie,Damasceno da Silva Gabriela Ghizzi,Berrin Jean-Guy,Rouau Xavier,Asther Marcel,Bignon Christophe

Abstract

Abstract Background To reduce the production cost of bioethanol obtained from fermentation of the sugars provided by degradation of lignocellulosic biomass (i.e., second generation bioethanol), it is necessary to screen for new enzymes endowed with more efficient biomass degrading properties. This demands the set-up of high-throughput screening methods. Several methods have been devised all using microplates in the industrial SBS format. Although this size reduction and standardization has greatly improved the screening process, the published methods comprise one or more manual steps that seriously decrease throughput. Therefore, we worked to devise a screening method devoid of any manual steps. Results We describe a fully automated assay for measuring the amount of reducing sugars released by biomass-degrading enzymes from wheat-straw and spruce. The method comprises two independent and automated steps. The first step is the making of "substrate plates". It consists of filling 96-well microplates with slurry suspensions of micronized substrate which are then stored frozen until use. The second step is an enzymatic activity assay. After thawing, the substrate plates are supplemented by the robot with cell-wall degrading enzymes where necessary, and the whole process from addition of enzymes to quantification of released sugars is autonomously performed by the robot. We describe how critical parameters (amount of substrate, amount of enzyme, incubation duration and temperature) were selected to fit with our specific use. The ability of this automated small-scale assay to discriminate among different enzymatic activities was validated using a set of commercial enzymes. Conclusions Using an automatic microplate sealer solved three main problems generally encountered during the set-up of methods for measuring the sugar-releasing activity of plant cell wall-degrading enzymes: throughput, automation, and evaporation losses. In its present set-up, the robot can autonomously process 120 triplicate wheat-straw samples per day. This throughput can be doubled if the incubation time is reduced from 24 h to 4 h (for initial rates measurements, for instance). This method can potentially be used with any insoluble substrate that is micronizable. A video illustrating the method can be seen at the following URL: http://www.youtube.com/watch?v=NFg6TxjuMWU

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Reference26 articles.

1. Gomez LD, Steele-King CG, McQueen-Mason SJ: Sustainable liquid biofuels from biomass: the writing's on the walls. New Phytol. 2008, 178: 473-485. 10.1111/j.1469-8137.2008.02422.x.

2. Van Maris AJA, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MAH, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JT: Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie van Leeuwenhoek. 2006, 90: 391-418. 10.1007/s10482-006-9085-7.

3. Margeot A, Hahn-Hagerdal B, Edlund M, Slade R, Monot F: New improvements for lignocellulosic ethanol. Curr Opin Biotech. 2009, 20: 372-380. 10.1016/j.copbio.2009.05.009.

4. Zhang Y-HP, Himmel ME, Mielenz JR: Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv. 2006, 24: 452-481. 10.1016/j.biotechadv.2005.10.002.

5. Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EGJ, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, Lopez de Leon A, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS: Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol. 2008, 26: 553-560. 10.1038/nbt1403.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3