Role of Rhizobium endoglucanase CelC2 in cellulose biosynthesis and biofilm formation on plant roots and abiotic surfaces

Author:

Robledo M,Rivera L,Jiménez-Zurdo Jose I,Rivas R,Dazzo F,Velázquez E,Martínez-Molina E,Hirsch Ann M,Mateos Pedro F

Abstract

Abstract Background The synthesis of cellulose is among the most important but poorly understood biochemical processes, especially in bacteria, due to its complexity and high degree of regulation. In this study, we analyzed both the production of cellulose by all known members of the Rhizobiaceae and the diversity of Rhizobium celABC operon predicted to be involved in cellulose biosynthesis. We also investigated the involvement in cellulose production and biofilm formation of celC gene encoding an endoglucanase (CelC2) that is required for canonical symbiotic root hair infection by Rhizobium leguminosarum bv. trifolii. Results ANU843 celC mutants lacking (ANU843ΔC2) or overproducing cellulase (ANU843C2+) produced greatly increased or reduced amounts of external cellulose micro fibrils, respectively. Calcofluor-stained cellulose micro fibrils were considerably longer when formed by ANU843ΔC2 bacteria rather than by the wild-type strain, in correlation with a significant increase in their flocculation in batch culture. In contrast, neither calcofluor-stained extracellular micro fibrils nor flocculation was detectable in ANU843C2+ cells. To clarify the role of cellulose synthesis in Rhizobium cell aggregation and attachment, we analyzed the ability of these mutants to produce biofilms on different surfaces. Alteration of wild-type CelC2 levels resulted in a reduced ability of bacteria to form biofilms both in abiotic surfaces and in planta. Conclusions Our results support a key role of the CelC2 cellulase in cellulose biosynthesis by modulating the length of the cellulose fibrils that mediate firm adhesion among Rhizobium bacteria leading to biofilm formation. Rhizobium cellulose is an essential component of the biofilm polysaccharidic matrix architecture and either an excess or a defect of this “building material” seem to collapse the biofilm structure. These results position cellulose hydrolytic enzymes as excellent anti-biofilm candidates.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3