Microbial keystone taxa drive succession of plant residue chemistry

Author:

Wang Xiaoyue1ORCID,Liang Chao2ORCID,Mao Jingdong3,Jiang Yuji1ORCID,Bian Qing1,Liang Yuting1ORCID,Chen Yan1,Sun Bo1ORCID

Affiliation:

1. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences , 210008 Nanjing, China

2. Institute of Applied Ecology, Chinese Academy of Sciences , 110016 Shenyang, China

3. Department of Chemistry and Biochemistry, Old Dominion University , 4541 Hampton Boulevard, Norfolk, VA 23529, USA

Abstract

Abstract Managing above-ground plant carbon inputs can pave the way toward carbon neutrality and mitigating climate change. Chemical complexity of plant residues largely controls carbon sequestration. There exist conflicting opinions on whether residue chemistry diverges or converges after long-term decomposition. Moreover, whether and how microbial communities regulate residue chemistry remains unclear. This study investigated the decomposition processes and residue composition dynamics of maize straw and wheat straw and related microbiomes over a period of 9 years in three climate zones. Residue chemistry exhibited a divergent-convergent trajectory during decomposition, that is, the residue composition diverged during the 0.5–3 year period under the combined effect of straw type and climate and then converged to an array of common compounds during the 3–9 year period. Chemical divergence during the first 2–3 years was primarily driven by the changes in extracellular enzyme activity influenced by keystone taxa-guided bacterial networks, and the keystone taxa belonged to Alphaproteobacteria, particularly Rhizobiales. After 9 years, microbial assimilation became dominant, leading to chemical convergence, and fungi, particularly Chaetomium, were the main contributors to microbial assimilation. Overall, this study demonstrated that keystone taxa regulate the divergent-convergent trajectory in residue chemistry.

Funder

the National Key R&D Program

the China Agriculture Research System of MOF and MARA

the Strategic Priority Research Program of the Chinese Academy of Sciences

the Science Foundation of the Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Ecology, Evolution, Behavior and Systematics,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3