Author:
Li Mingji,Wang Junshu,Geng Yanping,Li Yikui,Wang Qian,Liang Quanfeng,Qi Qingsheng
Abstract
Abstract
Background
For metabolic engineering, many rate-limiting steps may exist in the pathways of accumulating the target metabolites. Increasing copy number of the desired genes in these pathways is a general method to solve the problem, for example, the employment of the multi-copy plasmid-based expression system. However, this method may bring genetic instability, structural instability and metabolic burden to the host, while integrating of the desired gene into the chromosome may cause inadequate transcription or expression. In this study, we developed a strategy for obtaining gene overexpression by engineering promoter clusters consisted of multiple core-tac- promoters (MCPtac s) in tandem.
Results
Through a uniquely designed in vitro assembling process, a series of promoter clusters were constructed. The transcription strength of these promoter clusters showed a stepwise enhancement with the increase of tandem repeats number until it reached the critical value of five. Application of the MCPtac s promoter clusters in polyhydroxybutyrate (PHB) production proved that it was efficient. Integration of the phaCAB genes with the 5CPtac s promoter cluster resulted in an engineered E.coli that can accumulate 23.7% PHB of the cell dry weight in batch cultivation.
Conclusions
The transcription strength of the MCPtac s promoter cluster can be greatly improved by increasing the tandem repeats number of the core-tac-promoter. By integrating the desired gene together with the MCPtac s promoter cluster into the chromosome of E. coli, we can achieve high and stale overexpression with only a small size. This strategy has an application potential in many fields and can be extended to other bacteria.
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Cited by
79 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献