The Rhodanese PspE Converts Thiosulfate to Cellular Sulfane Sulfur in Escherichia coli

Author:

Yu Qiaoli1,Ran Mingxue1,Xin Yuping1,Liu Huaiwei1ORCID,Liu Honglei1,Xia Yongzhen1ORCID,Xun Luying12

Affiliation:

1. State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China

2. School of Molecular Biosciences, Washington State University, Pullman, WA 991647520, USA

Abstract

Hydrogen sulfide (H2S) and its oxidation product zero-valent sulfur (S0) play important roles in animals, plants, and bacteria. Inside cells, S0 exists in various forms, including polysulfide and persulfide, which are collectively referred to as sulfane sulfur. Due to the known health benefits, the donors of H2S and sulfane sulfur have been developed and tested. Among them, thiosulfate is a known H2S and sulfane sulfur donor. We have previously reported that thiosulfate is an effective sulfane sulfur donor in Escherichia coli; however, it is unclear how it converts thiosulfate to cellular sulfane sulfur. In this study, we showed that one of the various rhodaneses, PspE, in E. coli was responsible for the conversion. After the thiosulfate addition, the ΔpspE mutant did not increase cellular sulfane sulfur, but the wild type and the complemented strain ΔpspE::pspE increased cellular sulfane sulfur from about 92 μM to 220 μM and 355 μM, respectively. LC-MS analysis revealed a significant increase in glutathione persulfide (GSSH) in the wild type and the ΔpspE::pspE strain. The kinetic analysis supported that PspE was the most effective rhodanese in E. coli in converting thiosulfate to glutathione persulfide. The increased cellular sulfane sulfur alleviated the toxicity of hydrogen peroxide during E. coli growth. Although cellular thiols might reduce the increased cellular sulfane sulfur to H2S, increased H2S was not detected in the wild type. The finding that rhodanese is required to convert thiosulfate to cellular sulfane sulfur in E. coli may guide the use of thiosulfate as the donor of H2S and sulfane sulfur in human and animal tests.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3