LncRNA-PACERR induces pro-tumour macrophages via interacting with miR-671-3p and m6A-reader IGF2BP2 in pancreatic ductal adenocarcinoma

Author:

Liu Yihao,Shi Minmin,He Xingfeng,Cao Yizhi,Liu Pengyi,Li Fanlu,Zou Siyi,Wen Chenlei,Zhan Qian,Xu Zhiwei,Wang Jiancheng,Sun Baofa,Shen Baiyong

Abstract

Abstract Background LncRNA-PACERR plays critical role in the polarization of tissue-associated macrophages (TAMs). In this study, we found the function and molecular mechanism of PACERR in TAMs to regulate pancreatic ductal adenocarcinoma (PDAC) progression. Methods We used qPCR to analyse the expression of PACERR in TAMs and M1-tissue-resident macrophages (M1-NTRMs) which were isolated from 46 PDAC tissues. The function of PACERR on macrophages polarization and PDAC proliferation, migration and invasion were confirmed through in vivo and in vitro assays. The molecular mechanism of PACERR was discussed via fluorescence in situ hybridization (FISH), RNA pull-down, ChIP-qPCR, RIP-qPCR and luciferase assays. Results LncRNA-PACERR was high expression in TAMs and associated with poor prognosis in PDAC patients. Our finding validated that LncRNA-PACERR increased the number of M2-polarized cells and facilized cell proliferation, invasion and migration in vitro and in vivo. Mechanistically, LncRNA-PACERR activate KLF12/p-AKT/c-myc pathway by binding to miR-671-3p. And LncRNA-PACERR which bound to IGF2BP2 acts as an m6A-dependent manner to enhance the stability of KLF12 and c-myc in cytoplasm. In addition, the promoter of LncRNA-PACERR was a target of KLF12 and LncRNA-PACERR recruited EP300 to increase the acetylation of histone by interacting with KLF12 in nucleus. Conclusions This study found that LncRNA-PACERR functions as key regulator of TAMs in PDAC microenvironment and revealed the novel mechanisms in cytoplasm and in nucleus.

Funder

National Natural Science Foundation

National Natural Science Foundation of 799 China

Medical-Engineering Cross Foundation of Shanghai Jiao Tong University

Shanghai Collaborative Innovation Center for Translational Medicine

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Biology,Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3