m6A methylation-mediated regulation of LncRNA MEG3 suppresses ovarian cancer progression through miR-885-5p and the VASH1 pathway
-
Published:2024-01-29
Issue:1
Volume:22
Page:
-
ISSN:1479-5876
-
Container-title:Journal of Translational Medicine
-
language:en
-
Short-container-title:J Transl Med
Author:
Li Yan, Lou Shenghan, Zhang Jian, Zhao Shilu, Lou GeORCID
Abstract
Abstract
Background
Ovarian cancer poses a serious threat to women's health. Due to the difficulty of early detection, most patients are diagnosed with advanced-stage disease or peritoneal metastasis. We found that LncRNA MEG3 is a novel tumor suppressor, but its role in tumor occurrence and development is still unclear.
Methods
We investigated the expression level of MEG3 in pan-cancer through bioinformatics analysis, especially in gynecological tumors. Function assays were used to detect the effect of MEG3 on the malignant phenotype of ovarian cancer. RIP, RNA pull-down, MeRIP-qPCR, actinomycin D test were carried out to explore the m6A methylation-mediated regulation on MEG3. Luciferase reporter gene assay, PCR and Western blot were implemented to reveal the potential mechanism of MEG3. We further confirmed the influence of MEG3 on tumor growth in vivo by orthotopic xenograft models and IHC assay.
Results
In this study, we discovered that MEG3 was downregulated in various cancers, with the most apparent downregulation in ovarian cancer. MEG3 inhibited the proliferation, migration, and invasion of ovarian cancer cells. Overexpression of MEG3 suppressed the degradation of VASH1 by negatively regulating miR-885-5p, inhibiting the ovarian cancer malignant phenotype. Furthermore, we demonstrated that MEG3 was regulated at the posttranscriptional level. YTHDF2 facilitated MEG3 decay by recognizing METTL3‑mediated m6A modification. Compared with those injected with vector control cells, mice injected with MEG3 knockdown cells showed larger tumor volumes and faster growth rates.
Conclusion
We demonstrated that MEG3 is influenced by METTL3/YTHDF2 methylation and restrains ovarian cancer proliferation and metastasis by binding miR-885-5p to increase VASH1 expression. MEG3 is expected to become a therapeutic target for ovarian cancer.
Funder
National Natural Science Foundation of China Natural Science Foundation of Heilongjiang Province First Affiliated Hospital of Harbin Medical University
Publisher
Springer Science and Business Media LLC
Reference68 articles.
1. Chowdhury S, Kennedy JJ, Ivey RG, Murillo OD, Hosseini N, Song X, Petralia F, Calinawan A, Savage SR, Berry AB, Reva B, Ozbek U, Krek A, Ma W, da Veiga Leprevost F, Ji J, Yoo S, Lin C, Voytovich UJ, Huang Y, Lee SH, Bergan L, Lorentzen TD, Mesri M, Rodriguez H, Hoofnagle AN, Herbert ZT, Nesvizhskii AI, Zhang B, Whiteaker JR, Fenyo D, McKerrow W, Wang J, Schurer SC, Stathias V, Chen XS, Barcellos-Hoff MH, Starr TK, Winterhoff BJ, Nelson AC, Mok SC, Kaufmann SH, Drescher C, Cieslik M, Wang P, Birrer MJ, Paulovich AG. Proteogenomic analysis of chemo-refractory high-grade serous ovarian cancer. Cell. 2023;186(16):3476-3498.e35. 2. Li N, Zhu J, Yin R, Wang J, Pan L, Kong B, Zheng H, Liu J, Wu X, Wang L, Huang Y, Wang K, Zou D, Zhao H, Wang C, Lu W, Lin A, Lou G, Li G, Qu P, Yang H, Zhang Y, Cai H, Pan Y, Hao M, Liu Z, Cui H, Yang Y, Yao S, Zhen X, Hang W, Hou J, Wang J, Wu L. Treatment with Niraparib maintenance therapy in patients with newly diagnosed advanced ovarian cancer: a phase 3 randomized clinical trial. JAMA Oncol. 2023. https://doi.org/10.1001/jamaoncol.2023.2283. 3. Karger A, Mansouri S, Leisegang MS, Weigert A, Gunther S, Kuenne C, Wittig I, Zukunft S, Klatt S, Aliraj B, Klotz LV, Winter H, Mahavadi P, Fleming I, Ruppert C, Witte B, Alkoudmani I, Gattenlohner S, Grimminger F, Seeger W, Pullamsetti SS, Savai R. ADPGK-AS1 long noncoding RNA switches macrophage metabolic and phenotypic state to promote lung cancer growth. EMBO J. 2023;42: e111620. 4. Karger A, Nandigama R, Stenzinger A, Grimminger F, Pullamsetti SS, Seeger W, Savai R. Hidden treasures: macrophage long non-coding RNAs in lung cancer progression. Cancers. 2021;13(16):4127. 5. Lin H, Zuo D, He J, Ji T, Wang J, Jiang T. Long noncoding RNA WEE2-AS1 plays an oncogenic role in glioblastoma by functioning as a molecular sponge for MicroRNA-520f-3p. Oncol Res. 2021;28(6):591–603.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|