Abstract
Abstract
Background
Drug-loaded nanoparticles have established their benefits in the fight against multiple myeloma; however, ligand-targeted nanomedicine has yet to successfully translate to the clinic due to insufficient efficacies reported in preclinical studies.
Methods
In this study, liposomal nanoparticles targeting multiple myeloma via CD38 or CD138 receptors are prepared from pre-synthesized, purified constituents to ensure increased consistency over standard synthetic methods. These nanoparticles are then tested both in vitro for uptake to cancer cells and in vivo for accumulation at the tumor site and uptake to tumor cells. Finally, drug-loaded nanoparticles are tested for long-term efficacy in a month-long in vivo study by tracking tumor size and mouse health.
Results
The targeted nanoparticles are first optimized in vitro and show increased uptake and cytotoxicity over nontargeted nanoparticles, with CD138-targeting showing superior enhancement over CD38-targeted nanoparticles. However, biodistribution and tumor suppression studies established CD38-targeted nanoparticles to have significantly increased in vivo tumor accumulation, tumor cell uptake, and tumor suppression over both nontargeted and CD138-targeted nanoparticles due to the latter’s poor selectivity.
Conclusion
These results both highlight a promising cancer treatment option in CD38-targeted nanoparticles and emphasize that targeting success in vitro does not necessarily translate to success in vivo.
Funder
Walther Cancer Foundation
Kelly Cares Foundation
National Cancer Institute
American Cancer Society
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Oncology,Molecular Biology,Hematology
Reference53 articles.
1. Gertz MA. Multiple myeloma rare disease database: national organization for rare disorders; 2019.
https://rarediseases.org/rare-diseases/multiple-myeloma/
.
2. Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS. Cell adhesion mediated drug resistance (CAM-DR): Role of integrins and resistance to apoptosis in human myeloma cell lines. Blood. 1999;93(5):1658–67.
3. Broder S, Humphrey R, Durm M, Blackman M, Meade B, Goldman C, et al. Impaired synthesis of polyclonal (non-paraprotein) immunoglobulins by circulating lymphocytes from patients with multiple-myeloma: role of suppressor cells. N Engl J Med. 1975;293(18):887–92.
4. Durie BGM, Salmon SE. Clinical staging system for multiple-myeloma—correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer. 1975;36(3):842–54.
5. Institute NC. Plasma Cell Neoplasms (Including Multiple Myeloma) Treatment (PDQ®)–Health Professional Version: National Cancer Institute; 2019.
https://www.cancer.gov/types/myeloma/hp/myeloma-treatment-pdq
.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献