Peroxidase‐Like Nanozyme Activates the cGAS‐STING Pathway via ROS‐Induced mtDNA Release for Cancer Immunotherapy

Author:

Zhu Xueqin1,Wang Xiaoxi1,Liu Zimai1,Jiang Bing2,He Zonghong1,Liu Sijia1,Wu Yahong134,Wu Zixian1,Zhang Tiantian1,Liu Meiyi1,Li Kai1,Niu Xiaoshuang5,Gao Yanfeng15ORCID

Affiliation:

1. School of Life Sciences Zhengzhou University Zhengzhou 450001 China

2. Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China

3. Henan Key Laboratory of Bioactive Macromolecules Zhengzhou University Zhengzhou 450001 China

4. International Joint Laboratory for Protein and Peptide Drugs of Henan Province Zhengzhou University Zhengzhou 450001 China

5. School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen 518107 China

Abstract

AbstractAlthough numerous peroxidase (POD)‐like nanozymes have been designed for catalytic therapy of cancer, development of nanozymes with higher therapeutic efficacy and less adverse effects are challengeable. More importantly, the underlying antitumor mechanism remains largely unknown which hinders their application. Here, the nitrogen‐doped carbon nanozyme (N‐PCNS) as a model is utilized and demonstrated that its capacity to specifically activate the STING pathway in tumor cells through reactive oxgen species (ROS)‐mediated mitochondrial DNA (mtDNA) release, which provides the initial signals for STING‐dependent innate immune response. Further, a peptide‐nanozyme conjugate (PNEC, OPBP1‐N‐PCNS), comprising a PD‐L1 blocking/targeting dual‐functional peptide and a cationic‐coated N‐PCNS is constructed, which are conjugated through a matrix metalloproteinase responsive peptide linker. The cleaved derivate nanozyme with positive charge exhibits recyclable capacity and superior ability in capturing and enhancing the transcellular transport of tumor‐derived mtDNA toward DCs, thereby amplifying the STING signaling‐mediated anti‐tumor immune response. This study proposed a unique mechanism and design strategy for POD‐like nanozyme in cancer immunotherapy.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3