CLDN6 inhibits breast cancer metastasis through WIP-dependent actin cytoskeleton-mediated autophagy

Author:

Dong Yuan,Jin Qiu,Sun Minghao,Qi Da,Qu Huinan,Wang Xinqi,Quan Chengshi

Abstract

Abstract Background As a breast cancer suppressor gene, CLDN6 overexpression was found to inhibit breast cancer metastasis in our previous studies, but the specific mechanism remains unclear. This study aimed to clarify the role and mechanism of CLDN6 in inhibiting breast cancer metastasis. Methods Western blot, immunofluorescence and transmission electron microscopy were performed to detect autophagy. Wound healing, transwell assays and lung metastasis mouse models were used to examine breast cancer metastasis. Phalloidin staining and immunofluorescent staining were used to observe actin cytoskeleton. mRNA seq, RT-PCR, western blot, chromatin immunoprecipitation, dual luciferase reporter assay, co-immunoprecipitation and immunofluorescence were performed to define the molecular mechanism. The expression levels and clinical implication of CLDN6, WIP and LC3 in breast cancer tissues were evaluated using immunohistochemistry. Results We demonstrated that CLDN6 inhibited breast cancer metastasis through autophagy in vitro and vivo. We unraveled a novel mechanism that CLDN6 regulated autophagy via WIP-dependent actin cytoskeleton assembly. Through its PDZ-binding motif, overexpressed CLDN6 interacted with JNK and upregulated JNK/c-Jun pathway. C-Jun promoted WIP expression at the transcriptional level. Notably, we observed c-Jun transcriptionally upregulated CLDN6 expression, and there was a positive feedback loop between CLDN6 and JNK/c-Jun. Finally, we found that CLDN6, WIP and LC3 expression correlated with each other, and WIP expression was significantly associated with lymph node metastasis of breast cancer patients. Conclusions The data provide a new insight into the inhibitory effects of CLDN6-mediated autophagy on breast cancer metastasis, and revealed the new mechanism of CLDN6 regulating autophagy through WIP-dependent actin cytoskeleton. Our findings enrich the theoretical basis for CLDN6 as a potential biomarker for breast cancer diagnosis and therapy.

Funder

National Natural Science Foundation of China

Jilin Scientific and Technological Development Program

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3