Permeability barrier dysfunction in transgenic mice overexpressing claudin 6

Author:

Turksen Kursad123,Troy Tammy-Claire1

Affiliation:

1. Ottawa Health Research Institute,

2. Divisions of Dermatology and Endocrinology, Department of Medicine, Ottawa Hospital and

3. Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada

Abstract

A defective epidermal permeability barrier (EPB) in premature birth remains a leading cause of neonatal death as a result of its associated complications, which include poor temperature stability, infection by micro-organisms through the skin, and the outflow of water. Despite its importance in survival, the mechanisms involved in the formation and maintenance of the EPB are not well understood. To address the possibility that claudins, a new superfamily of tight junctional molecules, are involved, we engineered transgenic mice with claudin 6 (Cldn6) overexpressed via the involucrin (Inv) promoter. Interestingly, the Inv-Cldn6 transgenic animals die within 2 days of birth, apparently due to the lack of an intact EPB as evidenced by increased water loss and the penetration of X-gal through the skin. Barrier dysfunction was manifested biochemically by the aberrant expression of late epidermal differentiation markers, including K1, filaggrin, loricrin, transglutaminase 3, involucrin, repetin, members of the SPRR family and the transcriptional regulator Klf4. The overall claudin profile of the epidermis was also modified. Our data suggest that repetin and SPRR1A and 2A are downregulated in response to the downregulation of Klf4 in the transgenic animals, which would contribute to decreased protein crossbridging leading to fragile, defective cornified envelopes. These results provide new insights into the role of claudin 6 in epithelial differentiation and EPB formation. In addition, the epidermal phenotype of these transgenic mice, which is very reminiscent of that in pre-term infant skin, suggest that they will be an important and novel model for studies on human premature EPB-related morbidity.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3