The SF3B1R625H mutation promotes prolactinoma tumor progression through aberrant splicing of DLG1

Author:

Guo Jing,Li Chuzhong,Fang Qiuyue,Liu Yulou,Wang Dawei,Chen Yiyuan,Xie Weiyan,Zhang Yazhuo

Abstract

Abstract Background Recently, a hotspot mutation in prolactinoma was observed in splicing factor 3b subunit 1 (SF3B1R625H), but its functional effects and underlying molecular mechanisms remain largely unexplored. Methods Using the CRISPR/Cas9 genome editing system and rat pituitary GH3 cells, we generated heterozygous Sf3b1R625H mutant cells. Sanger and whole-genome sequencing were conducted to verify the introduction of this mutation. Transcriptome analysis was performed in SF3B1-wild-type versus mutant human prolactinoma samples and GH3 cells. RT-PCR and minigene reporter assays were conducted to verify aberrant splicing. The functional consequences of SF3B1R625H were evaluated in vitro and in vivo. Critical makers of epithelial-mesenchymal transition and key components were detected using western blot, immunohistochemistry, and immunofluorescence. Suppressing proteins was achieved using siRNA. Results Transcriptomic analysis of prolactinomas and heterozygous mutant cells revealed that the SF3B1R625H allele led to different alterations in splicing properties, affecting different genes in different species. SF3B1R625H promoted aberrant splicing and DLG1 suppression in both rat cells and human tumors. In addition, SF3B1R625H and knocking down DLG1 promoted cell migration, invasion, and epithelial-mesenchymal transition through PI3K/Akt pathway. Conclusions Our findings elucidate a mechanism through which mutant SF3B1 promotes tumor progression and may provide a potent molecular therapeutic target for prolactinomas with the SF3B1R625H mutation.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3