Hedgehog-Gli1-derived exosomal circ-0011536 mediates peripheral neural remodeling in pancreatic cancer by modulating the miR-451a/VGF axis

Author:

Dai Weiqi,Wu Xiaoli,Li Jingjing,Tang Wenxi,Wang Ying,Xu Wenqiang,Han Dengyu,Xu Xiaorong,Xu Xuanfu

Abstract

Abstract Background Hedgehog-Gli1 signaling induces development of two common neurological features seen in pancreatic ductal adenocarcinoma (PDAC): peripheral neural invasion (PNI) and peripheral neural remodeling (PNR). However, the underlying molecular mechanisms in cancer cells and nerves within Gli1-derived PNR have not previously been comprehensively analyzed. Methods In this study, RNA sequencing was used to screen meaningful circRNAs in PNR. An in vitro model of PNR was subsequently constructed through a co-culture system comprising PDAC cells and murine dorsal root ganglia (DRG) (as the neuronal element), and the relevant mechanisms were explored using a series of molecular biology experiments. A subcutaneous nude mouse tumorigenesis model was established to further verify the occurrence of PNR that was detected in human PDAC samples. Results We first confirmed the molecular mechanisms of PNR development through crosstalk between exosomal circ-0011536 and DRG. In Gli1-overpressed PDAC, circ-0011536 is mainly secreted by exosomes. After being ingested by DRG, it can promote the activity of DRG by degrading miR-451a and upregulating the expression of VGF. Overexpression of Gli1 can accelerate the proliferation of subcutaneous tumors in mice and is closely related to the density of nerve plexuses, while downregulating circ-RNA inhibits tumor proliferation and reduces the density of nerve plexuses. In addition, TMA results confirmed that Gli1 overexpression significantly increased the expression of VGF and was closely associated with increased nerve plexus density. Conclusion Hedgehog-Gli1-induced exosomal circ-0011536 promoted PNR via the miR-451a/VGF axis, thereby establishing that it may contribute to PDAC-associated nerve changes with activated Hedgehog signaling.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3