Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal DNA barcoding?
-
Published:2020-07-10
Issue:1
Volume:11
Page:
-
ISSN:2210-6359
-
Container-title:IMA Fungus
-
language:en
-
Short-container-title:IMA Fungus
Author:
Lücking RobertORCID, Aime M. CatherineORCID, Robbertse Barbara, Miller Andrew N.ORCID, Ariyawansa Hiran A.ORCID, Aoki TakayukiORCID, Cardinali GianluigiORCID, Crous Pedro W.ORCID, Druzhinina Irina S.ORCID, Geiser David M., Hawksworth David L.ORCID, Hyde Kevin D.ORCID, Irinyi LaszloORCID, Jeewon RajeshORCID, Johnston Peter R.ORCID, Kirk Paul M.ORCID, Malosso ElaineORCID, May Tom W.ORCID, Meyer WielandORCID, Öpik MaarjaORCID, Robert Vincent, Stadler MarcORCID, Thines MarcoORCID, Vu DuongORCID, Yurkov Andrey M.ORCID, Zhang NingORCID, Schoch Conrad L.ORCID
Abstract
ABSTRACTTrue fungi (Fungi) and fungus-like organisms (e.g. Mycetozoa, Oomycota) constitute the second largest group of organisms based on global richness estimates, with around 3 million predicted species. Compared to plants and animals, fungi have simple body plans with often morphologically and ecologically obscure structures. This poses challenges for accurate and precise identifications. Here we provide a conceptual framework for the identification of fungi, encouraging the approach of integrative (polyphasic) taxonomy for species delimitation, i.e. the combination of genealogy (phylogeny), phenotype (including autecology), and reproductive biology (when feasible). This allows objective evaluation of diagnostic characters, either phenotypic or molecular or both. Verification of identifications is crucial but often neglected. Because of clade-specific evolutionary histories, there is currently no single tool for the identification of fungi, although DNA barcoding using the internal transcribed spacer (ITS) remains a first diagnosis, particularly in metabarcoding studies. Secondary DNA barcodes are increasingly implemented for groups where ITS does not provide sufficient precision. Issues of pairwise sequence similarity-based identifications and OTU clustering are discussed, and multiple sequence alignment-based phylogenetic approaches with subsequent verification are recommended as more accurate alternatives. In metabarcoding approaches, the trade-off between speed and accuracy and precision of molecular identifications must be carefully considered. Intragenomic variation of the ITS and other barcoding markers should be properly documented, as phylotype diversity is not necessarily a proxy of species richness. Important strategies to improve molecular identification of fungi are: (1) broadly document intraspecific and intragenomic variation of barcoding markers; (2) substantially expand sequence repositories, focusing on undersampled clades and missing taxa; (3) improve curation of sequence labels in primary repositories and substantially increase the number of sequences based on verified material; (4) link sequence data to digital information of voucher specimens including imagery. In parallel, technological improvements to genome sequencing offer promising alternatives to DNA barcoding in the future. Despite the prevalence of DNA-based fungal taxonomy, phenotype-based approaches remain an important strategy to catalog the global diversity of fungi and establish initial species hypotheses.
Publisher
Springer Science and Business Media LLC
Subject
Agricultural and Biological Sciences (miscellaneous),Ecology, Evolution, Behavior and Systematics
Reference445 articles.
1. Abarenkov K, Nilsson RH, Larsson KH, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R (2010) The UNITE database for molecular identification of fungi – recent updates and future perspectives. New Phytologist 186:281–285. https://doi.org/10.1111/j.1469-8137.2009.03160.x 2. Abarenkov K, Somervuo P, Nilsson RH, Kirk PM, Huotari T, Abrego N, Ovaskainen O (2018) Protax-fungi: a web-based tool for probabilistic taxonomic placement of fungal internal transcribed spacer sequences. New Phytologist 220:517–525. https://doi.org/10.1111/nph.15301 3. Agapow PM, Bininda-Emonds OR, Crandall KA, Gittleman JL, Mace GM, Marshall JC, Purvis A (2004) The impact of species concept on biodiversity studies. The Quarterly Review of Biology 79:161–179. https://doi.org/10.1086/383542 4. Aguilar-Trigueros CA, Hempel S, Powell JR, Cornwell WK, Rillig MC (2019) Bridging reproductive and microbial ecology: a case study in arbuscular mycorrhizal fungi. The ISME Journal 13:873–884. https://doi.org/10.1038/s41396-018-0314-7 5. Aime MC (2004) Intercompatibility tests and phylogenetic analysis in the Crepidotus sphaerula group complex: concordance between ICGs and nuclear rDNA sequences highlight phenotypic plasticity within Appalachian species. In: Cripps CL (ed) Fungi in Forest Ecosystems: Systematics, Diversity, and Ecology. New York Botanical Gardens, New York, pp 71–80
Cited by
295 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|